Ore Extensions of Hopf Algebras
Matematičeskie zametki, Tome 74 (2003) no. 3, pp. 425-434.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, Ore extensions in the class of Hopf algebras are studied. The classification theorem enables one to describe the Hopf–Ore extensions for the group algebras, for the algebras $U(\mathfrak g)$ and $U_q(\mathfrak g)$, and for the quantum "$ax+b$" group.
@article{MZM_2003_74_3_a10,
     author = {A. N. Panov},
     title = {Ore {Extensions} of {Hopf} {Algebras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {425--434},
     publisher = {mathdoc},
     volume = {74},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a10/}
}
TY  - JOUR
AU  - A. N. Panov
TI  - Ore Extensions of Hopf Algebras
JO  - Matematičeskie zametki
PY  - 2003
SP  - 425
EP  - 434
VL  - 74
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a10/
LA  - ru
ID  - MZM_2003_74_3_a10
ER  - 
%0 Journal Article
%A A. N. Panov
%T Ore Extensions of Hopf Algebras
%J Matematičeskie zametki
%D 2003
%P 425-434
%V 74
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a10/
%G ru
%F MZM_2003_74_3_a10
A. N. Panov. Ore Extensions of Hopf Algebras. Matematičeskie zametki, Tome 74 (2003) no. 3, pp. 425-434. http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a10/

[1] Beatie M., “An isomorphism theorem for Ore extension Hopf algebras”, Comm. Algebra, 2000, no. 2, 569–584 | DOI

[2] Beatie M., Dascalescu S., Grunenfelder L., “Constructing pointed Hopf algebras by Ore extensions”, Algebra, 225 (2000), 743–770 | DOI | MR

[3] Delvaux L., “Pairing and Drinfeld-double of Ore extensions”, Comm. Algebras, 29:7 (2001), 3167–3177 | DOI | MR | Zbl

[4] Nenciu A., “Cleft extensions for a class of pointed Hopf algebras constructed by Ore extensions”, Comm. Algebra, 29:5 (2001), 1959–1981 | DOI | MR | Zbl

[5] Nenciu A., “Quasitriangular structures for a class of pointed Hopf algebras constructed by Ore extensions”, Comm. Algebra, 29:8 (2001), 3419–3432 | DOI | MR | Zbl

[6] McConnel J. C., Robson J. C., Noncommutative Noetherian rings, Wileys-Interscience, New-York, 1987 | Zbl

[7] Montgomery S., “Hopf algebras and their actions on rings”, Reg. Conf. Series in Math., 82, 1993

[8] Diksme Zh., Universalnye obertyvayuschie algebry, Mir, M., 1978