Ore Extensions of Hopf Algebras
Matematičeskie zametki, Tome 74 (2003) no. 3, pp. 425-434 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, Ore extensions in the class of Hopf algebras are studied. The classification theorem enables one to describe the Hopf–Ore extensions for the group algebras, for the algebras $U(\mathfrak g)$ and $U_q(\mathfrak g)$, and for the quantum "$ax+b$" group.
@article{MZM_2003_74_3_a10,
     author = {A. N. Panov},
     title = {Ore {Extensions} of {Hopf} {Algebras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {425--434},
     year = {2003},
     volume = {74},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a10/}
}
TY  - JOUR
AU  - A. N. Panov
TI  - Ore Extensions of Hopf Algebras
JO  - Matematičeskie zametki
PY  - 2003
SP  - 425
EP  - 434
VL  - 74
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a10/
LA  - ru
ID  - MZM_2003_74_3_a10
ER  - 
%0 Journal Article
%A A. N. Panov
%T Ore Extensions of Hopf Algebras
%J Matematičeskie zametki
%D 2003
%P 425-434
%V 74
%N 3
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a10/
%G ru
%F MZM_2003_74_3_a10
A. N. Panov. Ore Extensions of Hopf Algebras. Matematičeskie zametki, Tome 74 (2003) no. 3, pp. 425-434. http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a10/

[1] Beatie M., “An isomorphism theorem for Ore extension Hopf algebras”, Comm. Algebra, 2000, no. 2, 569–584 | DOI

[2] Beatie M., Dascalescu S., Grunenfelder L., “Constructing pointed Hopf algebras by Ore extensions”, Algebra, 225 (2000), 743–770 | DOI | MR

[3] Delvaux L., “Pairing and Drinfeld-double of Ore extensions”, Comm. Algebras, 29:7 (2001), 3167–3177 | DOI | MR | Zbl

[4] Nenciu A., “Cleft extensions for a class of pointed Hopf algebras constructed by Ore extensions”, Comm. Algebra, 29:5 (2001), 1959–1981 | DOI | MR | Zbl

[5] Nenciu A., “Quasitriangular structures for a class of pointed Hopf algebras constructed by Ore extensions”, Comm. Algebra, 29:8 (2001), 3419–3432 | DOI | MR | Zbl

[6] McConnel J. C., Robson J. C., Noncommutative Noetherian rings, Wileys-Interscience, New-York, 1987 | Zbl

[7] Montgomery S., “Hopf algebras and their actions on rings”, Reg. Conf. Series in Math., 82, 1993

[8] Diksme Zh., Universalnye obertyvayuschie algebry, Mir, M., 1978