On Six-Dimensional $G2$-Submanifolds of Cayley Algebras
Matematičeskie zametki, Tome 74 (2003) no. 3, pp. 323-328.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a generic-type 6-dimensional almost Hermitian submanifold of the algebra of octaves is minimal if and only if it belongs to the Gray–Hervella class $G2$. This is a maximal strengthening of the well-known result of Gray, who proved the minimality of the 6-dimensional Kähler submanifolds of the Cayley algebra.
@article{MZM_2003_74_3_a0,
     author = {M. B. Banaru},
     title = {On {Six-Dimensional} $G2${-Submanifolds} of {Cayley} {Algebras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {323--328},
     publisher = {mathdoc},
     volume = {74},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a0/}
}
TY  - JOUR
AU  - M. B. Banaru
TI  - On Six-Dimensional $G2$-Submanifolds of Cayley Algebras
JO  - Matematičeskie zametki
PY  - 2003
SP  - 323
EP  - 328
VL  - 74
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a0/
LA  - ru
ID  - MZM_2003_74_3_a0
ER  - 
%0 Journal Article
%A M. B. Banaru
%T On Six-Dimensional $G2$-Submanifolds of Cayley Algebras
%J Matematičeskie zametki
%D 2003
%P 323-328
%V 74
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a0/
%G ru
%F MZM_2003_74_3_a0
M. B. Banaru. On Six-Dimensional $G2$-Submanifolds of Cayley Algebras. Matematičeskie zametki, Tome 74 (2003) no. 3, pp. 323-328. http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a0/

[1] Gray A., Hervella L. M., “The sixteen classes of almost Hermitian manifolds and their linear invariants”, Ann. Mat. Pure Appl., 123:4 (1980), 35–58 | DOI | MR | Zbl

[2] Hervella L. M., Vidal E., “Nouvelles géométries pseudo-kählériennes $G1$ et $G2$”, C. R. Acad. Sci. Paris. Ser. A, 283 (1976), 115–118 | MR | Zbl

[3] Koto S., “Some theorems on almost Kählerian spaces”, J. Math. Soc. Japan, 1960, no. 12, 422–433 | MR | Zbl

[4] Gray A., “Some examples of almost Hermitian manifolds”, Illinois J. Math., 1969, no. 10, 353–366

[5] Gray A., “Vector cross product on manifolds”, Trans. Amer. Math. Soc., 141 (1969), 465–504 | DOI | MR | Zbl

[6] Tanno S., “The automorphism groups of almost Hermitian manifolds”, Trans. Amer. Math. Soc., 137 (1969), 269–275 | DOI | MR | Zbl

[7] Vaisman I., “On locally conformal almost Kählerian manifolds”, Israel J. Math., 24:3–4 (1976), 338–351 | DOI | MR | Zbl

[8] Kirichenko V. F., “Pochti kelerovy struktury, indutsirovannye 3-vektornymi proizvedeniyami na 6-mernykh podmnogoobraziyakh algebry Keli”, Vestn. MGU, 1973, no. 3, 70–75 | Zbl

[9] Kirichenko V. F., “Klassifikatsiya kelerovykh struktur, indutsirovannykh 3-vektornymi proizvedeniyami na 6-mernykh podmnogoobraziyakh algebry Keli”, Izv. vuzov. Matem., 1980, no. 8, 32–38 | MR | Zbl

[10] Kirichenko V. F., “Ustoichivost pochti ermitovykh struktur, indutsirovannykh 3-vektornymi proizvedeniyami na 6-mernykh podmnogoobraziyakh algebry Keli”, Ukr. geom. sb., 1982, 60–69 | Zbl

[11] Kirichenko V. F., “Ermitova geometriya shestimernykh simmetricheskikh podmnogoobrazii algebry Keli”, Vestn. MGU, 1994, no. 3, 6–13 | MR | Zbl

[12] Tretyakova I. V., Differentsialnaya geometriya pochti kelerovykh mnogoobrazii, Diss. ... kand. fiz.-matem. nauk, MPGU, M., 2000

[13] Freidental G., “Oktavy, osobye gruppy i oktavnaya geometriya”, Matematika, 1:1 (1957), 117–153

[14] Postnikov M. M., Lektsii po geometrii, Semestr IV. Differentsialnaya geometriya, Nauka, M., 1988 | Zbl

[15] Likhnerovich A., Teoriya svyaznostei v tselom i gruppy golonomii, IL, M., 1960

[16] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. II, Nauka, M., 1981

[17] Banaru M. B., “O pochti ermitovykh strukturakh, indutsirovannykh 3-vektornymi proizvedeniyami na 6-mernykh orientiruemykh podmnogoobraziyakh algebry oktav”, Polianaliticheskie funktsii, Smolensk, 1997, 113–117

[18] Banaru M. B., “Klassy Greya–Khervelly pochti ermitovykh struktur na 6-mernykh podmnogoobraziyakh algebry Keli”, Nauch. tr. MPGU im. V. I. Lenina, 1994, 36–38

[19] Banaru M. B., “O spektrakh vazhneishikh tenzorov 6-mernykh ermitovykh podmnogoobrazii algebry Keli”, Noveishie problemy teorii polya, KGU; KTs RAN, Kazan, 2000, 18–22

[20] Gray A., “Minimal varieties and almost Hermitian submanifolds”, Michigan J. Math., 12 (1965), 273–287 | DOI | MR | Zbl