On Six-Dimensional $G2$-Submanifolds of Cayley Algebras
Matematičeskie zametki, Tome 74 (2003) no. 3, pp. 323-328
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that a generic-type 6-dimensional almost Hermitian submanifold of the algebra of octaves is minimal if and only if it belongs to the Gray–Hervella class $G2$. This is a maximal strengthening of the well-known result of Gray, who proved the minimality of the 6-dimensional Kähler submanifolds of the Cayley algebra.
@article{MZM_2003_74_3_a0,
author = {M. B. Banaru},
title = {On {Six-Dimensional} $G2${-Submanifolds} of {Cayley} {Algebras}},
journal = {Matemati\v{c}eskie zametki},
pages = {323--328},
publisher = {mathdoc},
volume = {74},
number = {3},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a0/}
}
M. B. Banaru. On Six-Dimensional $G2$-Submanifolds of Cayley Algebras. Matematičeskie zametki, Tome 74 (2003) no. 3, pp. 323-328. http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a0/