On Six-Dimensional $G2$-Submanifolds of Cayley Algebras
Matematičeskie zametki, Tome 74 (2003) no. 3, pp. 323-328

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a generic-type 6-dimensional almost Hermitian submanifold of the algebra of octaves is minimal if and only if it belongs to the Gray–Hervella class $G2$. This is a maximal strengthening of the well-known result of Gray, who proved the minimality of the 6-dimensional Kähler submanifolds of the Cayley algebra.
@article{MZM_2003_74_3_a0,
     author = {M. B. Banaru},
     title = {On {Six-Dimensional} $G2${-Submanifolds} of {Cayley} {Algebras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {323--328},
     publisher = {mathdoc},
     volume = {74},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a0/}
}
TY  - JOUR
AU  - M. B. Banaru
TI  - On Six-Dimensional $G2$-Submanifolds of Cayley Algebras
JO  - Matematičeskie zametki
PY  - 2003
SP  - 323
EP  - 328
VL  - 74
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a0/
LA  - ru
ID  - MZM_2003_74_3_a0
ER  - 
%0 Journal Article
%A M. B. Banaru
%T On Six-Dimensional $G2$-Submanifolds of Cayley Algebras
%J Matematičeskie zametki
%D 2003
%P 323-328
%V 74
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a0/
%G ru
%F MZM_2003_74_3_a0
M. B. Banaru. On Six-Dimensional $G2$-Submanifolds of Cayley Algebras. Matematičeskie zametki, Tome 74 (2003) no. 3, pp. 323-328. http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a0/