Speciality of Metabelian Mal''tsev Algebras
Matematičeskie zametki, Tome 74 (2003) no. 2, pp. 257-266

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that, for any metabelian Mal'tsev algebra $M$ over a field of characteristic $\ne2,3$, there is an alternative algebra $A$ such that the algebra $M$ can be embedded in the commutator algebra $A^{(-)}$. Moreover, the enveloping alternative algebra $A$ can be found in the variety of algebras with the identity $[x,y][z,t]=0$. The proof of this result is based on the construction of additive bases of the free metabelian Mal"tsev algebra and the free alternative algebra with the identity $[x,y][z,t] = 0$.
@article{MZM_2003_74_2_a7,
     author = {S. V. Pchelintsev},
     title = {Speciality of {Metabelian} {Mal''tsev} {Algebras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {257--266},
     publisher = {mathdoc},
     volume = {74},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_2_a7/}
}
TY  - JOUR
AU  - S. V. Pchelintsev
TI  - Speciality of Metabelian Mal''tsev Algebras
JO  - Matematičeskie zametki
PY  - 2003
SP  - 257
EP  - 266
VL  - 74
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_2_a7/
LA  - ru
ID  - MZM_2003_74_2_a7
ER  - 
%0 Journal Article
%A S. V. Pchelintsev
%T Speciality of Metabelian Mal''tsev Algebras
%J Matematičeskie zametki
%D 2003
%P 257-266
%V 74
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_2_a7/
%G ru
%F MZM_2003_74_2_a7
S. V. Pchelintsev. Speciality of Metabelian Mal''tsev Algebras. Matematičeskie zametki, Tome 74 (2003) no. 2, pp. 257-266. http://geodesic.mathdoc.fr/item/MZM_2003_74_2_a7/