Structure of the Phase Portrait of an Endomorphism of the Plane at the Moment of Bifurcation of Its Diagonal Attractor
Matematičeskie zametki, Tome 74 (2003) no. 2, pp. 230-237.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study phenomena that occur at the moment of an essentially two-dimensional bifurcation of a stationary point embedded in the diagonal attractor of a two-dimensional mapping constructed by coupling together a pair of identical one-dimensional unimodal piecewise linear mappings.
@article{MZM_2003_74_2_a4,
     author = {V. A. Dobrynskii},
     title = {Structure of the {Phase} {Portrait} of an {Endomorphism} of the {Plane} at the {Moment} of {Bifurcation} of {Its} {Diagonal} {Attractor}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {230--237},
     publisher = {mathdoc},
     volume = {74},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_2_a4/}
}
TY  - JOUR
AU  - V. A. Dobrynskii
TI  - Structure of the Phase Portrait of an Endomorphism of the Plane at the Moment of Bifurcation of Its Diagonal Attractor
JO  - Matematičeskie zametki
PY  - 2003
SP  - 230
EP  - 237
VL  - 74
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_2_a4/
LA  - ru
ID  - MZM_2003_74_2_a4
ER  - 
%0 Journal Article
%A V. A. Dobrynskii
%T Structure of the Phase Portrait of an Endomorphism of the Plane at the Moment of Bifurcation of Its Diagonal Attractor
%J Matematičeskie zametki
%D 2003
%P 230-237
%V 74
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_2_a4/
%G ru
%F MZM_2003_74_2_a4
V. A. Dobrynskii. Structure of the Phase Portrait of an Endomorphism of the Plane at the Moment of Bifurcation of Its Diagonal Attractor. Matematičeskie zametki, Tome 74 (2003) no. 2, pp. 230-237. http://geodesic.mathdoc.fr/item/MZM_2003_74_2_a4/

[1] Pikovsky A. S., Grassberger P., “Symmetry breaking bifurcation for coupled chaotic attractors”, J. Phys. A. Math. Gen., 24 (1991), 4587–4597 | DOI | MR

[2] Pikovsky A. S.,, Kurths J., “Collective behavior in ensembles of globally coupled maps”, Physica D, 76 (1994), 411–419 | DOI | MR | Zbl

[3] Losson J., Mackey M., “Coupling induced statistical cycling in two diffusively coupled maps”, Physica D, 72 (1994), 324–342 | DOI | MR | Zbl

[4] Keller G., Mixing for Finite Systems of Coupled Tent Maps, Preprint ESI No 388, Vienna, 1996

[5] Dobrynskii V. A., “Suschestvovanie dvumernykh topologicheski peremeshivayuschikh attraktorov u nekotorykh kusochno-lineinykh otobrazhenii ploskosti”, Izv. RAN. Ser. matem., 62:6 (1998), 53–58 | MR | Zbl

[6] Dobrynskii V. A., “Kriticheskie mnozhestva i unimodalnye otobrazheniya kvadrata”, Dokl. RAN, 341:4 (1995), 442–445 | MR | Zbl

[7] Dobrynskii V. A., “Kriticheskie mnozhestva i unimodalnye otobrazheniya kvadrata”, Matem. zametki, 58:5 (1995), 669–680 | MR | Zbl

[8] Li T.-Y., Yorke J. A., “Period three implies chaos”, Amer. Math. Monthly, 82 (1975), 985–992 | DOI | MR | Zbl

[9] Marotto F. R., “Snap-back repellers imply chaos in $\mathbb R^n$”, J. Math. Anal. Appl., 63 (1978), 199–223 | DOI | MR | Zbl

[10] Rogers T. D., Marotto F. R., “Perturbations of mappings with periodic repellers”, Nonlinear Analysis, 7:1 (1983), 97–100 | DOI | MR | Zbl

[11] Hale J. K., Lin X. B., “Symbolic dynamics and nonlinear semiflows”, Ann. Mat. Pura Appl., 144 (1986), 229–259 | DOI | MR | Zbl

[12] Steinlein H., Walters H. O., “Hyperbolic sets, transversal homoclinic trajectories and symbolic dynamics for $C^1$-maps in Banach spaces”, J. Dynamics and Differential Equations, 2:3 (1990), 325–365 | DOI | MR | Zbl