Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2003_74_2_a4, author = {V. A. Dobrynskii}, title = {Structure of the {Phase} {Portrait} of an {Endomorphism} of the {Plane} at the {Moment} of {Bifurcation} of {Its} {Diagonal} {Attractor}}, journal = {Matemati\v{c}eskie zametki}, pages = {230--237}, publisher = {mathdoc}, volume = {74}, number = {2}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_2_a4/} }
TY - JOUR AU - V. A. Dobrynskii TI - Structure of the Phase Portrait of an Endomorphism of the Plane at the Moment of Bifurcation of Its Diagonal Attractor JO - Matematičeskie zametki PY - 2003 SP - 230 EP - 237 VL - 74 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2003_74_2_a4/ LA - ru ID - MZM_2003_74_2_a4 ER -
%0 Journal Article %A V. A. Dobrynskii %T Structure of the Phase Portrait of an Endomorphism of the Plane at the Moment of Bifurcation of Its Diagonal Attractor %J Matematičeskie zametki %D 2003 %P 230-237 %V 74 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2003_74_2_a4/ %G ru %F MZM_2003_74_2_a4
V. A. Dobrynskii. Structure of the Phase Portrait of an Endomorphism of the Plane at the Moment of Bifurcation of Its Diagonal Attractor. Matematičeskie zametki, Tome 74 (2003) no. 2, pp. 230-237. http://geodesic.mathdoc.fr/item/MZM_2003_74_2_a4/
[1] Pikovsky A. S., Grassberger P., “Symmetry breaking bifurcation for coupled chaotic attractors”, J. Phys. A. Math. Gen., 24 (1991), 4587–4597 | DOI | MR
[2] Pikovsky A. S.,, Kurths J., “Collective behavior in ensembles of globally coupled maps”, Physica D, 76 (1994), 411–419 | DOI | MR | Zbl
[3] Losson J., Mackey M., “Coupling induced statistical cycling in two diffusively coupled maps”, Physica D, 72 (1994), 324–342 | DOI | MR | Zbl
[4] Keller G., Mixing for Finite Systems of Coupled Tent Maps, Preprint ESI No 388, Vienna, 1996
[5] Dobrynskii V. A., “Suschestvovanie dvumernykh topologicheski peremeshivayuschikh attraktorov u nekotorykh kusochno-lineinykh otobrazhenii ploskosti”, Izv. RAN. Ser. matem., 62:6 (1998), 53–58 | MR | Zbl
[6] Dobrynskii V. A., “Kriticheskie mnozhestva i unimodalnye otobrazheniya kvadrata”, Dokl. RAN, 341:4 (1995), 442–445 | MR | Zbl
[7] Dobrynskii V. A., “Kriticheskie mnozhestva i unimodalnye otobrazheniya kvadrata”, Matem. zametki, 58:5 (1995), 669–680 | MR | Zbl
[8] Li T.-Y., Yorke J. A., “Period three implies chaos”, Amer. Math. Monthly, 82 (1975), 985–992 | DOI | MR | Zbl
[9] Marotto F. R., “Snap-back repellers imply chaos in $\mathbb R^n$”, J. Math. Anal. Appl., 63 (1978), 199–223 | DOI | MR | Zbl
[10] Rogers T. D., Marotto F. R., “Perturbations of mappings with periodic repellers”, Nonlinear Analysis, 7:1 (1983), 97–100 | DOI | MR | Zbl
[11] Hale J. K., Lin X. B., “Symbolic dynamics and nonlinear semiflows”, Ann. Mat. Pura Appl., 144 (1986), 229–259 | DOI | MR | Zbl
[12] Steinlein H., Walters H. O., “Hyperbolic sets, transversal homoclinic trajectories and symbolic dynamics for $C^1$-maps in Banach spaces”, J. Dynamics and Differential Equations, 2:3 (1990), 325–365 | DOI | MR | Zbl