@article{MZM_2003_74_2_a4,
author = {V. A. Dobrynskii},
title = {Structure of the {Phase} {Portrait} of an {Endomorphism} of the {Plane} at the {Moment} of {Bifurcation} of {Its} {Diagonal} {Attractor}},
journal = {Matemati\v{c}eskie zametki},
pages = {230--237},
year = {2003},
volume = {74},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_2_a4/}
}
TY - JOUR AU - V. A. Dobrynskii TI - Structure of the Phase Portrait of an Endomorphism of the Plane at the Moment of Bifurcation of Its Diagonal Attractor JO - Matematičeskie zametki PY - 2003 SP - 230 EP - 237 VL - 74 IS - 2 UR - http://geodesic.mathdoc.fr/item/MZM_2003_74_2_a4/ LA - ru ID - MZM_2003_74_2_a4 ER -
V. A. Dobrynskii. Structure of the Phase Portrait of an Endomorphism of the Plane at the Moment of Bifurcation of Its Diagonal Attractor. Matematičeskie zametki, Tome 74 (2003) no. 2, pp. 230-237. http://geodesic.mathdoc.fr/item/MZM_2003_74_2_a4/
[1] Pikovsky A. S., Grassberger P., “Symmetry breaking bifurcation for coupled chaotic attractors”, J. Phys. A. Math. Gen., 24 (1991), 4587–4597 | DOI | MR
[2] Pikovsky A. S.,, Kurths J., “Collective behavior in ensembles of globally coupled maps”, Physica D, 76 (1994), 411–419 | DOI | MR | Zbl
[3] Losson J., Mackey M., “Coupling induced statistical cycling in two diffusively coupled maps”, Physica D, 72 (1994), 324–342 | DOI | MR | Zbl
[4] Keller G., Mixing for Finite Systems of Coupled Tent Maps, Preprint ESI No 388, Vienna, 1996
[5] Dobrynskii V. A., “Suschestvovanie dvumernykh topologicheski peremeshivayuschikh attraktorov u nekotorykh kusochno-lineinykh otobrazhenii ploskosti”, Izv. RAN. Ser. matem., 62:6 (1998), 53–58 | MR | Zbl
[6] Dobrynskii V. A., “Kriticheskie mnozhestva i unimodalnye otobrazheniya kvadrata”, Dokl. RAN, 341:4 (1995), 442–445 | MR | Zbl
[7] Dobrynskii V. A., “Kriticheskie mnozhestva i unimodalnye otobrazheniya kvadrata”, Matem. zametki, 58:5 (1995), 669–680 | MR | Zbl
[8] Li T.-Y., Yorke J. A., “Period three implies chaos”, Amer. Math. Monthly, 82 (1975), 985–992 | DOI | MR | Zbl
[9] Marotto F. R., “Snap-back repellers imply chaos in $\mathbb R^n$”, J. Math. Anal. Appl., 63 (1978), 199–223 | DOI | MR | Zbl
[10] Rogers T. D., Marotto F. R., “Perturbations of mappings with periodic repellers”, Nonlinear Analysis, 7:1 (1983), 97–100 | DOI | MR | Zbl
[11] Hale J. K., Lin X. B., “Symbolic dynamics and nonlinear semiflows”, Ann. Mat. Pura Appl., 144 (1986), 229–259 | DOI | MR | Zbl
[12] Steinlein H., Walters H. O., “Hyperbolic sets, transversal homoclinic trajectories and symbolic dynamics for $C^1$-maps in Banach spaces”, J. Dynamics and Differential Equations, 2:3 (1990), 325–365 | DOI | MR | Zbl