On a Problem of Leont'ev and Representing Systems of Exponentials
Matematičeskie zametki, Tome 74 (2003) no. 2, pp. 301-313 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study whether an entire function of exponential type has totally regular growth if its derivative increases sufficiently fast on the zero set of the function itself. In particular, for a function with a trigonometrically convex (or positive) lower indicator, we obtain a solution of a well-known problem of Leont'ev. As an application, we refine some already known results concerning the characterization of exponents of the representing systems of exponentials.
@article{MZM_2003_74_2_a11,
     author = {V. B. Sherstyukov},
     title = {On a {Problem} of {Leont'ev} and {Representing} {Systems} of {Exponentials}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {301--313},
     year = {2003},
     volume = {74},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_2_a11/}
}
TY  - JOUR
AU  - V. B. Sherstyukov
TI  - On a Problem of Leont'ev and Representing Systems of Exponentials
JO  - Matematičeskie zametki
PY  - 2003
SP  - 301
EP  - 313
VL  - 74
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_2_a11/
LA  - ru
ID  - MZM_2003_74_2_a11
ER  - 
%0 Journal Article
%A V. B. Sherstyukov
%T On a Problem of Leont'ev and Representing Systems of Exponentials
%J Matematičeskie zametki
%D 2003
%P 301-313
%V 74
%N 2
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_2_a11/
%G ru
%F MZM_2003_74_2_a11
V. B. Sherstyukov. On a Problem of Leont'ev and Representing Systems of Exponentials. Matematičeskie zametki, Tome 74 (2003) no. 2, pp. 301-313. http://geodesic.mathdoc.fr/item/MZM_2003_74_2_a11/

[1] Leontev A. F., “Ob usloviyakh razreshimosti analiticheskikh funktsii v ryady Dirikhle”, Izv. AN SSSR. Ser. matem., 36:6 (1972), 1282–1295 | MR | Zbl

[2] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956

[3] Bratischev A. V., “K odnoi zadache A. F. Leonteva”, Dokl. AN SSSR, 270:2 (1983), 265–267 | MR | Zbl

[4] Melnik Yu. I., “O predstavlenii regulyarnykh funktsii ryadami tipa ryadov Dirikhle”, Issledovanie po teorii priblizheniya funktsii i ikh prilozheniya, Kiev, 1978, 132–141 | MR | Zbl

[5] Korobeinik Yu. F., “Predstavlyayuschie sistemy”, UMN, 36:1 (1981), 73–126 | MR | Zbl

[6] Bratischev A. V., Bazisy Kete, tselye funktsii i ikh prilozheniya, Diss. $\dots$ d.f.-m.n., Ekaterinburg, 1995

[7] Korobeinik Yu. F., “Maksimalnye i $\gamma$-dostatochnye mnozhestva. Prilozheniya k tselym funktsiyam, 2”, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, 55, Kharkov, 1991, 23–34 | MR | Zbl

[8] Levin B. Ya., “Pochti periodicheskie funktsii s ogranichennym spektrom”, Aktualnye voprosy matematicheskogo analiza, Izd-vo RGU, Rostov-na-Donu, 1978, 112–124

[9] Azarin V. S., “Primer tseloi funktsii s zadannym indikatorom i nizhnim indikatorom”, Matem. sb., 89 (131):4 (1972), 541–557 | MR | Zbl

[10] Abanin A. V., “Geometricheskie kriterii predstavleniya analiticheskikh funktsii ryadami obobschennykh eksponent”, Dokl. RAN, 323:5 (1992), 807–810 | MR | Zbl

[11] Sherstyukov V. B., “K voprosu o $\gamma$-dostatochnykh mnozhestvakh”, Sib. matem. zh., 41:4 (2000), 935–943 | MR | Zbl

[12] Katsnelson V. E., “Ekvivalentnye normy v prostranstvakh tselykh funktsii”, Matem. sb., 92(134):1(9) (1973), 34–54 | MR | Zbl

[13] Logvinenko V. N., “Ob odnom mnogomernom obobschenii teoremy M. Kartrait”, Dokl. AN SSSR, 219:3 (1974), 546–549 | MR | Zbl