On a Problem of Leont'ev and Representing Systems of Exponentials
Matematičeskie zametki, Tome 74 (2003) no. 2, pp. 301-313

Voir la notice de l'article provenant de la source Math-Net.Ru

We study whether an entire function of exponential type has totally regular growth if its derivative increases sufficiently fast on the zero set of the function itself. In particular, for a function with a trigonometrically convex (or positive) lower indicator, we obtain a solution of a well-known problem of Leont'ev. As an application, we refine some already known results concerning the characterization of exponents of the representing systems of exponentials.
@article{MZM_2003_74_2_a11,
     author = {V. B. Sherstyukov},
     title = {On a {Problem} of {Leont'ev} and {Representing} {Systems} of {Exponentials}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {301--313},
     publisher = {mathdoc},
     volume = {74},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_2_a11/}
}
TY  - JOUR
AU  - V. B. Sherstyukov
TI  - On a Problem of Leont'ev and Representing Systems of Exponentials
JO  - Matematičeskie zametki
PY  - 2003
SP  - 301
EP  - 313
VL  - 74
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_2_a11/
LA  - ru
ID  - MZM_2003_74_2_a11
ER  - 
%0 Journal Article
%A V. B. Sherstyukov
%T On a Problem of Leont'ev and Representing Systems of Exponentials
%J Matematičeskie zametki
%D 2003
%P 301-313
%V 74
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_2_a11/
%G ru
%F MZM_2003_74_2_a11
V. B. Sherstyukov. On a Problem of Leont'ev and Representing Systems of Exponentials. Matematičeskie zametki, Tome 74 (2003) no. 2, pp. 301-313. http://geodesic.mathdoc.fr/item/MZM_2003_74_2_a11/