Polynomial Wavelet-Type Expansions on the Sphere
Matematičeskie zametki, Tome 74 (2003) no. 2, pp. 292-300.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a polynomial wavelet-type system on $S^d$ such that any continuous function can be expanded with respect to these “wavelets”. The order of the growth of the degrees of the polynomials is optimal. The coefficients in the expansion are the inner products of the function and the corresponding element of a “dual wavelet system”. The “dual wavelets system” is also a polynomial system with the same growth of degrees of polynomials. The system is redundant. A construction of a polynomial basis is also presented. In contrast to our wavelet-type system, this basis is not suitable for implementation, because, first, there are no explicit formulas for the coefficient functionals and, second, the growth of the degrees of polynomials is too rapid.
@article{MZM_2003_74_2_a10,
     author = {A. Askari-Hemmat and M. A. Dehghan and M. A. Skopina},
     title = {Polynomial {Wavelet-Type} {Expansions} on the {Sphere}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {292--300},
     publisher = {mathdoc},
     volume = {74},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_2_a10/}
}
TY  - JOUR
AU  - A. Askari-Hemmat
AU  - M. A. Dehghan
AU  - M. A. Skopina
TI  - Polynomial Wavelet-Type Expansions on the Sphere
JO  - Matematičeskie zametki
PY  - 2003
SP  - 292
EP  - 300
VL  - 74
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_2_a10/
LA  - ru
ID  - MZM_2003_74_2_a10
ER  - 
%0 Journal Article
%A A. Askari-Hemmat
%A M. A. Dehghan
%A M. A. Skopina
%T Polynomial Wavelet-Type Expansions on the Sphere
%J Matematičeskie zametki
%D 2003
%P 292-300
%V 74
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_2_a10/
%G ru
%F MZM_2003_74_2_a10
A. Askari-Hemmat; M. A. Dehghan; M. A. Skopina. Polynomial Wavelet-Type Expansions on the Sphere. Matematičeskie zametki, Tome 74 (2003) no. 2, pp. 292-300. http://geodesic.mathdoc.fr/item/MZM_2003_74_2_a10/

[1] Foias C., Singer I., “Some remarks on strongly independent sequences and bases in Banach spaces”, Rev. Math. Pure et Appl. Acad. R. P. R., 6:3 (1961), 589–594 | MR | Zbl

[2] Privalov Al. A., “O roste stepenei polinomialnykh bazisov i priblizhenii trigonometricheskikh proektovov”, Matem. zametki, 42:2 (1987), 207–214 | MR

[3] Lorentz R. A., Sahakian A. A., “Orthogonal trigonometric Schauder bases of optimal degree for $C(0,2\pi)$”, J. Fourier Anal. Appl., 1:1 (1994), 103–112 | DOI | MR | Zbl

[4] Skopina M. A., “Ortogonalnye polinomialnye bazisy Shaudera $C[-1,1]$ s optimalnym rostom stepenei”, Matem. sb., 192:3 (2001), 115–136 | MR | Zbl

[5] Freeden W., Schreiner M., “Orthogonal and non-orthogonal multiresolution analysis, scale discrete and exact fully discrete wavelet transform on the sphere”, Constructive Approximation, 14 (1998), 493–515 | DOI | MR | Zbl

[6] Farkov Yu., “B-spline wavelets on the sphere”, Self-Similar Systems, Proceedings of the International Workshop (July 30–August 7, 1998, Dubna, Russia), 1999, 79–82; E5-99-38, JINR, Dubna

[7] Skopina M., Polynomial expansions of continuous functions on the sphere and on the disk, Preprint No 2001:5, University of South Carolina, Department of Mathematics, 2001

[8] Müller C., Spherical Harmonics, Lecture Notes in Math., 17, Springer-Verlag, Berlin, 1966

[9] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | Zbl

[10] Mhaskar H. N., Narcowich F. J., Ward J. D., “Spherical Marcinkievicz–Zygmund inequalities and positive quadrature”, Math. Comp., 70:235 (2001), 1113–1130 | DOI | MR | Zbl

[11] Mhaskar H. N., Narcowich F. J., Ward J. D., Prestin J., “Polynomial frames on the sphere”, Adv. Comput. Math., 13 (2000), 387–403 | DOI | MR | Zbl

[12] Askey R., Orthogonal polynomials and spherical functions, SIAM, Philadelphia, 1975 | Zbl

[13] Sege G., Ortogonalnye mnogochleny, Fizmatgiz, M., 1962

[14] Kashin B. S., Saakyan A. A., Ortogonalnye ryady, AFTs, M., 1999

[15] Wang Kunyang, Li Luoking, Harmonic analysis and approximation on the unit sphere, Graduate Series in Mathematics, 2000