Spaces of Functions of Fractional Smoothness on an Irregular Domain
Matematičeskie zametki, Tome 74 (2003) no. 2, pp. 163-183.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the spaces $B_{pq}^s (G)$ and $L_{pq}^s (G)$ of functions with positive exponent of smoothness $s > 0$, defined on a domain $G\subset\mathbb R^n$. For a domain $G$ with specific geometric properties, we establish the embedding $B_{pp}^s(G)=L_{pp}^s(G)\subset L_q(G)$, $1$, with the relationship between the parameters defined by these geometric properties.
@article{MZM_2003_74_2_a0,
     author = {O. V. Besov},
     title = {Spaces of {Functions} of {Fractional} {Smoothness} on an {Irregular} {Domain}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {163--183},
     publisher = {mathdoc},
     volume = {74},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_2_a0/}
}
TY  - JOUR
AU  - O. V. Besov
TI  - Spaces of Functions of Fractional Smoothness on an Irregular Domain
JO  - Matematičeskie zametki
PY  - 2003
SP  - 163
EP  - 183
VL  - 74
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_2_a0/
LA  - ru
ID  - MZM_2003_74_2_a0
ER  - 
%0 Journal Article
%A O. V. Besov
%T Spaces of Functions of Fractional Smoothness on an Irregular Domain
%J Matematičeskie zametki
%D 2003
%P 163-183
%V 74
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_2_a0/
%G ru
%F MZM_2003_74_2_a0
O. V. Besov. Spaces of Functions of Fractional Smoothness on an Irregular Domain. Matematičeskie zametki, Tome 74 (2003) no. 2, pp. 163-183. http://geodesic.mathdoc.fr/item/MZM_2003_74_2_a0/

[1] Besov O. V., “Teorema vlozheniya Soboleva dlya oblasti s neregulyarnoi granitsei”, Dokl. RAN, 373:2 (2000), 151–154 | MR

[2] Besov O. V., “Teorema vlozheniya Soboleva dlya oblasti s neregulyarnoi granitsei”, Matem. sb., 192:3 (2001), 3–26 | MR | Zbl

[3] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977

[4] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996

[5] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980

[6] Strichartz P. S., “Multipliers on fractional Sobolev spaces”, J. Math. Mech., 16:9 (1967), 1031–1060 | MR | Zbl

[7] Lizorkin P. I., “Operatory, svyazannye s drobnym differentsirovaniem, i klassy differentsiruemykh funktsii”, Tr. MIAN, 117, Nauka, M., 1972, 212–243 | MR | Zbl

[8] Tribel Kh., Teoriya funktsionalnykh prostranstv, Mir, M., 1986 | Zbl

[9] Adzhiev S. S., “Kharakterizatsiya funktsionalnykh prostranstv $B_{p,q}^s(G)$, $L_{p,q}^s(G)$, $W_p^s(G)$ i vlozheniya v $BMO(G)$”, Tr. MIAN, 214, Nauka, M., 1997, 7–24 | Zbl

[10] Triebel H., “Local approximation spaces”, Z. Anal. Anwend., 88:3 (1989), 261–288 | MR

[11] Brudnyi Yu. A., “Prostranstva, opredelyaemye s pomoschyu lokalnykh priblizhenii”, Tr. MMO, 24, URSS, M., 1971, 70–132 | MR

[12] DeVore R. A., Sharpley R. S., Maximal function measuring smoothness, Mem. Amer. Math. Soc., 293, 1984 | MR | Zbl

[13] Calderon A. P., “Estimates for singular integral operators in terms of maximal functions”, Stud. Math., 44 (1972), 563–682 | MR

[14] Besov O. V., “Ekvivalentnye normy v prostranstvakh funktsii drobnoi gladkosti na proizvolnoi oblasti”, Matem. zametki, 74:3, 340–349 | MR | Zbl

[15] Kilpeläinen T., Malý J., “Sobolev inequalities on sets with irregular boundaries”, Z. Anal. Anwend., 19:2 (2000), 369–380 | MR | Zbl

[16] Besov O. V., “O kompaktnosti vlozhenii vesovykh prostranstv Soboleva na oblasti s neregulyarnoi granitsei”, Tr. MIAN, 232, Nauka, M., 2001, 72–93 | MR | Zbl

[17] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973

[18] Besov O. V., “Vlozheniya prostranstv differentsiruemykh funktsii peremennoi gladkosti”, Tr. MIAN, 214, Nauka, M., 1997, 25–58 | Zbl

[19] Besov O. V., “Prostranstva funktsii drobnoi gladkosti na neregulyarnoi oblasti”, Dokl. RAN, 383:5 (2002), 586–591 | MR

[20] Labutin D. A., “Neuluchshaemost neravenstv Soboleva dlya klassa neregulyarnykh oblastei”, Tr. MIAN, 232, Nauka, M., 2001, 218–222 | MR