Two-Dimensional Töplitz Operators with Measurable Symbols
Matematičeskie zametki, Tome 74 (2003) no. 1, pp. 88-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the complete algebra of two-dimensional Töplitz operators with measurable bounded symbols, we establish conditions necessary for the Fredholm property of the operators and prove results on the separation of singularities of the symbols. As a corollary, conditions sufficient for the Fredholm property are established for operators with symbols satisfying local conditions of sectorial type.
@article{MZM_2003_74_1_a9,
     author = {L. I. Sazonov},
     title = {Two-Dimensional {T\"oplitz} {Operators} with {Measurable} {Symbols}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {88--98},
     publisher = {mathdoc},
     volume = {74},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_1_a9/}
}
TY  - JOUR
AU  - L. I. Sazonov
TI  - Two-Dimensional Töplitz Operators with Measurable Symbols
JO  - Matematičeskie zametki
PY  - 2003
SP  - 88
EP  - 98
VL  - 74
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_1_a9/
LA  - ru
ID  - MZM_2003_74_1_a9
ER  - 
%0 Journal Article
%A L. I. Sazonov
%T Two-Dimensional Töplitz Operators with Measurable Symbols
%J Matematičeskie zametki
%D 2003
%P 88-98
%V 74
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_1_a9/
%G ru
%F MZM_2003_74_1_a9
L. I. Sazonov. Two-Dimensional Töplitz Operators with Measurable Symbols. Matematičeskie zametki, Tome 74 (2003) no. 1, pp. 88-98. http://geodesic.mathdoc.fr/item/MZM_2003_74_1_a9/

[1] Bötcher A., Silbermann B., Analysis of Toeplitz operators, Akademie-Verlag, Berlin, 1989

[2] Pilidi V. S., “O mnogomernykh bisingulyarnykh operatorakh”, Dokl. AN SSSR, 201 (1971), 787–789 | MR | Zbl

[3] Sazonov L. I., “Bisingulyarnye kharakteristicheskie operatory s razryvnymi koeffitsientami v prostranstve $L_2(\mathbf R^2)$”, Funktsion. analiz i ego prilozh., 19:2 (1985), 90–91 | MR | Zbl

[4] Sazonov L. I., “O bisingulyarnykh operatorakh s izmerimymi koeffitsientami”, Sib. matem. zh., 37:2 (1996), 389–398 | MR | Zbl

[5] Krasnoselskii M. A., Zabreiko P. P., Pustylnik E. I., Sobolevskii P. E., Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966

[6] Danford N., Shvarts Dzh. T., Lineinye operatory. Spektralnaya teoriya, Mir, M., 1966

[7] Simonenko I. B., “Novyi obschii metod issledovaniya lineinykh operatornykh uravnenii tipa singulyarnykh integralnykh uravnenii”, Izv. AN SSSR. Ser. matem., 29:3 (1965), 567–586 | MR | Zbl

[8] Iosida K., Funktsionalnyi analiz, Mir, M., 1967

[9] Naimark M. Yu., Normirovannye koltsa, Nauka, M., 1968 | Zbl

[10] Gokhberg I. Ts., Krupnik N. Ya., Vvedenie v teoriyu odnomernykh singulyarnykh integralnykh operatorov, Shtiintsa, Kishinev, 1973

[11] Gokhberg I. Ts., Feldman I. A., Uravneniya v svertkakh i proektsionnye metody ikh resheniya, Nauka, M., 1971