Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2003_74_1_a15, author = {V. G. Krotov}, title = {When is an {Orthogonal} {Series} a {Fourier} {Series?}}, journal = {Matemati\v{c}eskie zametki}, pages = {139--142}, publisher = {mathdoc}, volume = {74}, number = {1}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_1_a15/} }
V. G. Krotov. When is an Orthogonal Series a Fourier Series?. Matematičeskie zametki, Tome 74 (2003) no. 1, pp. 139-142. http://geodesic.mathdoc.fr/item/MZM_2003_74_1_a15/
[1] Orlicz W., Studia Math., 1 (1929), 1–39
[2] Kachmazh S., Shteingauz G., Teoriya ortogonalnykh ryadov, GIFML, M., 1958
[3] Brui I. N., Matem. zametki, 71:2 (2002), 182–193 | MR | Zbl
[4] Krasnoselskii M. A., Rutitskii Ya. B., Vypuklye funktsii i prostranstva Orlicha, GIFML, M., 1958
[5] Garnett Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984 | Zbl
[6] Bruj I., Schmieder G., Acta Sci. Math. (Szeged), 64 (1998), 483–488 | MR | Zbl
[7] Brui I. N., Matem. zametki, 62:5 (1997), 677–686 | MR | Zbl
[8] Brui I. N., Vestsi AN Belarusi. Ser.fiz.-matem., 2000, no. 1, 46–49 | MR
[9] Brui I. N., Matem. sb., 193:4 (2002), 17–36 | MR | Zbl
[10] Zigmund A., Trigonometricheskie ryady, T. 2, Mir, M., 1965