When is an Orthogonal Series a Fourier Series?
Matematičeskie zametki, Tome 74 (2003) no. 1, pp. 139-142.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_2003_74_1_a15,
     author = {V. G. Krotov},
     title = {When is an {Orthogonal} {Series} a {Fourier} {Series?}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {139--142},
     publisher = {mathdoc},
     volume = {74},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_1_a15/}
}
TY  - JOUR
AU  - V. G. Krotov
TI  - When is an Orthogonal Series a Fourier Series?
JO  - Matematičeskie zametki
PY  - 2003
SP  - 139
EP  - 142
VL  - 74
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_1_a15/
LA  - ru
ID  - MZM_2003_74_1_a15
ER  - 
%0 Journal Article
%A V. G. Krotov
%T When is an Orthogonal Series a Fourier Series?
%J Matematičeskie zametki
%D 2003
%P 139-142
%V 74
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_1_a15/
%G ru
%F MZM_2003_74_1_a15
V. G. Krotov. When is an Orthogonal Series a Fourier Series?. Matematičeskie zametki, Tome 74 (2003) no. 1, pp. 139-142. http://geodesic.mathdoc.fr/item/MZM_2003_74_1_a15/

[1] Orlicz W., Studia Math., 1 (1929), 1–39

[2] Kachmazh S., Shteingauz G., Teoriya ortogonalnykh ryadov, GIFML, M., 1958

[3] Brui I. N., Matem. zametki, 71:2 (2002), 182–193 | MR | Zbl

[4] Krasnoselskii M. A., Rutitskii Ya. B., Vypuklye funktsii i prostranstva Orlicha, GIFML, M., 1958

[5] Garnett Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984 | Zbl

[6] Bruj I., Schmieder G., Acta Sci. Math. (Szeged), 64 (1998), 483–488 | MR | Zbl

[7] Brui I. N., Matem. zametki, 62:5 (1997), 677–686 | MR | Zbl

[8] Brui I. N., Vestsi AN Belarusi. Ser.fiz.-matem., 2000, no. 1, 46–49 | MR

[9] Brui I. N., Matem. sb., 193:4 (2002), 17–36 | MR | Zbl

[10] Zigmund A., Trigonometricheskie ryady, T. 2, Mir, M., 1965