Similarity of $\operatorname{sgn}x\bigl(-\frac{d^2}{dx^2}+c\delta\bigr)$ Type Operators to Normal and Self-adjoint Operators
Matematičeskie zametki, Tome 74 (2003) no. 1, pp. 134-139.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_2003_74_1_a14,
     author = {I. M. Karabash and A. S. Kostenko},
     title = {Similarity of $\operatorname{sgn}x\bigl(-\frac{d^2}{dx^2}+c\delta\bigr)$ {Type} {Operators} to {Normal} and {Self-adjoint} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {134--139},
     publisher = {mathdoc},
     volume = {74},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_1_a14/}
}
TY  - JOUR
AU  - I. M. Karabash
AU  - A. S. Kostenko
TI  - Similarity of $\operatorname{sgn}x\bigl(-\frac{d^2}{dx^2}+c\delta\bigr)$ Type Operators to Normal and Self-adjoint Operators
JO  - Matematičeskie zametki
PY  - 2003
SP  - 134
EP  - 139
VL  - 74
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_1_a14/
LA  - ru
ID  - MZM_2003_74_1_a14
ER  - 
%0 Journal Article
%A I. M. Karabash
%A A. S. Kostenko
%T Similarity of $\operatorname{sgn}x\bigl(-\frac{d^2}{dx^2}+c\delta\bigr)$ Type Operators to Normal and Self-adjoint Operators
%J Matematičeskie zametki
%D 2003
%P 134-139
%V 74
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_1_a14/
%G ru
%F MZM_2003_74_1_a14
I. M. Karabash; A. S. Kostenko. Similarity of $\operatorname{sgn}x\bigl(-\frac{d^2}{dx^2}+c\delta\bigr)$ Type Operators to Normal and Self-adjoint Operators. Matematičeskie zametki, Tome 74 (2003) no. 1, pp. 134-139. http://geodesic.mathdoc.fr/item/MZM_2003_74_1_a14/

[1] Beals R., J. Differential Equations, 56:3 (1985), 391–407 | DOI | MR | Zbl

[2] Pyatkov S. G., Sib. matem. zh., 30:4 (1989), 111–124 | MR | Zbl

[3] Ćurgus B., Najman B., Proc. Amer. Math. Soc., 123 (1995), 1125–1128 | DOI | MR | Zbl

[4] Naboko S. N., Funktsion. analiz i ego prilozh., 18:1 (1984), 16–27 | MR | Zbl

[5] Malamud M. M., Ukr. matem. zh., 37:1 (1985), 49–56 | MR | Zbl

[6] Karabash I. M., Methods of Functional Analysis and Topology, 6:2 (2000), 22–49 | MR | Zbl

[7] Fadeev M. M., Shterenberg R. G., Zapiski nauch. sem. POMI, 270, POMI, SPb., 2000, 336–349

[8] Akhiezer N. I., Glazman I. M., Teoriya lineinykh operatorov v gilbertovom prostranstve, T. 2, Vischa Shkola, Kharkov, 1978

[9] Derkach V. A., Malamud M. M., Ukr. matem. zh., 44:4 (1992), 435–459 | MR | Zbl

[10] Kusis P., Vvedenie v teoriyu prostranstv $H^p$, Mir, M., 1984

[11] Albeverio S., Gesztesy F., Hoegh-Krohn R., Holden H., Solvabel models in quantum mechanics, Springer, New York, 1988 | Zbl