@article{MZM_2003_74_1_a14,
author = {I. M. Karabash and A. S. Kostenko},
title = {Similarity of $\operatorname{sgn}x\bigl(-\frac{d^2}{dx^2}+c\delta\bigr)$ {Type} {Operators} to {Normal} and {Self-adjoint} {Operators}},
journal = {Matemati\v{c}eskie zametki},
pages = {134--139},
year = {2003},
volume = {74},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_1_a14/}
}
TY - JOUR
AU - I. M. Karabash
AU - A. S. Kostenko
TI - Similarity of $\operatorname{sgn}x\bigl(-\frac{d^2}{dx^2}+c\delta\bigr)$ Type Operators to Normal and Self-adjoint Operators
JO - Matematičeskie zametki
PY - 2003
SP - 134
EP - 139
VL - 74
IS - 1
UR - http://geodesic.mathdoc.fr/item/MZM_2003_74_1_a14/
LA - ru
ID - MZM_2003_74_1_a14
ER -
%0 Journal Article
%A I. M. Karabash
%A A. S. Kostenko
%T Similarity of $\operatorname{sgn}x\bigl(-\frac{d^2}{dx^2}+c\delta\bigr)$ Type Operators to Normal and Self-adjoint Operators
%J Matematičeskie zametki
%D 2003
%P 134-139
%V 74
%N 1
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_1_a14/
%G ru
%F MZM_2003_74_1_a14
I. M. Karabash; A. S. Kostenko. Similarity of $\operatorname{sgn}x\bigl(-\frac{d^2}{dx^2}+c\delta\bigr)$ Type Operators to Normal and Self-adjoint Operators. Matematičeskie zametki, Tome 74 (2003) no. 1, pp. 134-139. http://geodesic.mathdoc.fr/item/MZM_2003_74_1_a14/
[1] Beals R., J. Differential Equations, 56:3 (1985), 391–407 | DOI | MR | Zbl
[2] Pyatkov S. G., Sib. matem. zh., 30:4 (1989), 111–124 | MR | Zbl
[3] Ćurgus B., Najman B., Proc. Amer. Math. Soc., 123 (1995), 1125–1128 | DOI | MR | Zbl
[4] Naboko S. N., Funktsion. analiz i ego prilozh., 18:1 (1984), 16–27 | MR | Zbl
[5] Malamud M. M., Ukr. matem. zh., 37:1 (1985), 49–56 | MR | Zbl
[6] Karabash I. M., Methods of Functional Analysis and Topology, 6:2 (2000), 22–49 | MR | Zbl
[7] Fadeev M. M., Shterenberg R. G., Zapiski nauch. sem. POMI, 270, POMI, SPb., 2000, 336–349
[8] Akhiezer N. I., Glazman I. M., Teoriya lineinykh operatorov v gilbertovom prostranstve, T. 2, Vischa Shkola, Kharkov, 1978
[9] Derkach V. A., Malamud M. M., Ukr. matem. zh., 44:4 (1992), 435–459 | MR | Zbl
[10] Kusis P., Vvedenie v teoriyu prostranstv $H^p$, Mir, M., 1984
[11] Albeverio S., Gesztesy F., Hoegh-Krohn R., Holden H., Solvabel models in quantum mechanics, Springer, New York, 1988 | Zbl