Invariant Simultaneous Solutions of Evolution Equations of Integrable Hierarchies
Matematičeskie zametki, Tome 74 (2003) no. 1, pp. 99-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct classical point symmetry groups for joint pairs of evolution equations (systems of equations) of integrable hierarchies related to the auxiliary equation of the method of the inverse problem of second order. For the two cases: the hierarchy of Korteweg–de Vries (KdV) equations and of the systems of Kaup equations, we construct simultaneous solutions invariant with respect to the symmetry group. The problem of the construction of these solutions can be reduced, respectively, to the first and second Painlevé equations depending on a parameter. The Painlevé equations are supplemented by the linear evolution equations defining the deformation of the solution of the corresponding Painlevé equation.
@article{MZM_2003_74_1_a10,
     author = {A. K. Svinin},
     title = {Invariant {Simultaneous} {Solutions} of {Evolution} {Equations} of {Integrable} {Hierarchies}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {99--107},
     publisher = {mathdoc},
     volume = {74},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_1_a10/}
}
TY  - JOUR
AU  - A. K. Svinin
TI  - Invariant Simultaneous Solutions of Evolution Equations of Integrable Hierarchies
JO  - Matematičeskie zametki
PY  - 2003
SP  - 99
EP  - 107
VL  - 74
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_1_a10/
LA  - ru
ID  - MZM_2003_74_1_a10
ER  - 
%0 Journal Article
%A A. K. Svinin
%T Invariant Simultaneous Solutions of Evolution Equations of Integrable Hierarchies
%J Matematičeskie zametki
%D 2003
%P 99-107
%V 74
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_1_a10/
%G ru
%F MZM_2003_74_1_a10
A. K. Svinin. Invariant Simultaneous Solutions of Evolution Equations of Integrable Hierarchies. Matematičeskie zametki, Tome 74 (2003) no. 1, pp. 99-107. http://geodesic.mathdoc.fr/item/MZM_2003_74_1_a10/

[1] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978

[2] Olver P., Prilozhenie grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | Zbl

[3] Alonso L. M., “Schrödinger spectral problems with energy dependent potentials as sources of nonlinear Hamiltonian evolution equations”, J. Math. Phys., 21 (1980), 2342–2349 | DOI | MR | Zbl

[4] Kaup D. J., “Finding eigenvalue problems for solving nonlinear evolution equations”, Progr. Theor. Phys., 54 (1975), 72–78 | DOI | MR | Zbl

[5] Matveev V. B., Yavor M. I., “Solutions presque périodiques et à $N$-solutions de l'équation hydrodynamique nonlinéaire de Kaup”, Ann. Inst. H. Poincaré, 31 (1979), 25–41 | MR | Zbl