On Prebox Module Topologies
Matematičeskie zametki, Tome 74 (2003) no. 1, pp. 12-18
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $R$ be a complete topological division ring whose topology is determined by a real-valued valuation, and let $M$ be a vector space over $R$. It is proved that $M$ admits a Hausdorff module topology preceding the box topology in the lattice of all module topologies if and only if the dimension of the vector space $M$ over $R$ is a measurable cardinal.
@article{MZM_2003_74_1_a1,
author = {V. I. Arnautov and K. M. Filippov},
title = {On {Prebox} {Module} {Topologies}},
journal = {Matemati\v{c}eskie zametki},
pages = {12--18},
year = {2003},
volume = {74},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_1_a1/}
}
V. I. Arnautov; K. M. Filippov. On Prebox Module Topologies. Matematičeskie zametki, Tome 74 (2003) no. 1, pp. 12-18. http://geodesic.mathdoc.fr/item/MZM_2003_74_1_a1/
[1] Arnautov V. I., Filippov K. M., “O predmaksimalnykh topologiyakh na vektornykh prostranstvakh”, Buletinul Academiei de Ştiinţă Republicii Moldova. Matematica, 20:1 (1996), 96–105 | MR
[2] Arnautov V. I., Filippov K. M., “O maksimalnykh tsepyakh v reshetke modulnykh topologii”, Sib. matem. zh., 42:3 (2001), 491–506 | MR | Zbl
[3] Arnautov V. I., Glavatski S. T., Michalev A. V., Introduction to the Theory of Topological Rings and Modules, Marcel Dekker, 1996 | Zbl
[4] Kuratovskii K., Mostovskii A., Teoriya mnozhestv, Mir, M., 1970