Real Algebraically Maximal Varieties
Matematičeskie zametki, Tome 73 (2003) no. 6, pp. 853-860
Cet article a éte moissonné depuis la source Math-Net.Ru
For real algebraic varieties whose real algebraic cohomology group is maximal, a canonical homomorphism is constructed from the cohomology group of the set of complex points into the cohomology group of the set of real points, and then it is proved that this homomorphism is an isomorphism.
@article{MZM_2003_73_6_a6,
author = {V. A. Krasnov},
title = {Real {Algebraically} {Maximal} {Varieties}},
journal = {Matemati\v{c}eskie zametki},
pages = {853--860},
year = {2003},
volume = {73},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_6_a6/}
}
V. A. Krasnov. Real Algebraically Maximal Varieties. Matematičeskie zametki, Tome 73 (2003) no. 6, pp. 853-860. http://geodesic.mathdoc.fr/item/MZM_2003_73_6_a6/
[1] Krasnov V. A., “Neravenstva Garnaka–Toma dlya otobrazhenii veschestvennykh algebraicheskikh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 47:2 (1983), 268–297 | MR
[2] Krasnov V. A., “Ob ekvivariantnykh kogomologiyakh Grotendika veschestvennogo algebraicheskogo mnogoobraziya i ikh prilozheniyakh”, Izv. RAN. Ser. matem., 58:3 (1994), 36–52 | MR | Zbl
[3] Krasnov V. A., “Veschestvennye algebraicheskie $GM$-mnogoobraziya”, Izv. RAN. Ser. matem., 62:3 (1998), 39–66 | MR | Zbl
[4] Krasnov V. A., “Veschestvennye algebraicheskie mnogoobraziya i kobordizmy”, Izv. RAN. Ser. matem. (to appear)
[5] Stong R., Zametki po teorii kobordizmov, Mir, M., 1973 | Zbl