Reflections and Three-Dimensionality
Matematičeskie zametki, Tome 73 (2003) no. 6, pp. 848-852.

Voir la notice de l'article provenant de la source Math-Net.Ru

If the dimension of a linear space is not greater than 3, then the characteristic polynomial of the Coxeter transformation associated with any symmetric matrix is invariant under the natural action of the symmetric group. If the dimensionality is greater than 3, then this statement does not hold. The set of all trees such that the spectrum of their associated Coxeter transformation contains negative one is three-dimensional.
@article{MZM_2003_73_6_a5,
     author = {V. A. Kolmykov},
     title = {Reflections and {Three-Dimensionality}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {848--852},
     publisher = {mathdoc},
     volume = {73},
     number = {6},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_6_a5/}
}
TY  - JOUR
AU  - V. A. Kolmykov
TI  - Reflections and Three-Dimensionality
JO  - Matematičeskie zametki
PY  - 2003
SP  - 848
EP  - 852
VL  - 73
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_6_a5/
LA  - ru
ID  - MZM_2003_73_6_a5
ER  - 
%0 Journal Article
%A V. A. Kolmykov
%T Reflections and Three-Dimensionality
%J Matematičeskie zametki
%D 2003
%P 848-852
%V 73
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_6_a5/
%G ru
%F MZM_2003_73_6_a5
V. A. Kolmykov. Reflections and Three-Dimensionality. Matematičeskie zametki, Tome 73 (2003) no. 6, pp. 848-852. http://geodesic.mathdoc.fr/item/MZM_2003_73_6_a5/

[1] Coxeter H. S. M., “The product of generators of finite group generated by reflections”, Duke Math. J., 1951, no. 18, 765–782 | DOI | MR | Zbl

[2] Burbaki N., Gruppy i algebry Li. Gruppy Kokstera i sistemy Titsa. Gruppy, porozhdennye otrazheniyami. Sistemy kornei, Per. s frants., Mir, M., 1972 | Zbl

[3] Bernshtein I. N., Gelfand I. M., Ponomarev V. A., “Funktory Kokstera i teorema Gabrielya”, UMN, 28:2 (1973), 19–33 | MR

[4] Kolmykov V. A., “Preobrazovanie Kokstera i chislo "$-1$"”, Matem. sb., 191:10 (2000), 51–56 | MR | Zbl