A Remark on Subgroup Separability in the Class of Finite $\pi$-Groups
Matematičeskie zametki, Tome 73 (2003) no. 6, pp. 904-909
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that if a group $G$ is residually $\mathscr N$, then for every $\mathscr N$-subgroup of the group $G$, the set of $\pi'$-roots from this subgroup is a $\pi$-separable $\mathscr N$-subgroup.
@article{MZM_2003_73_6_a11,
author = {E. V. Sokolov},
title = {A {Remark} on {Subgroup} {Separability} in the {Class} of {Finite} $\pi${-Groups}},
journal = {Matemati\v{c}eskie zametki},
pages = {904--909},
publisher = {mathdoc},
volume = {73},
number = {6},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_6_a11/}
}
E. V. Sokolov. A Remark on Subgroup Separability in the Class of Finite $\pi$-Groups. Matematičeskie zametki, Tome 73 (2003) no. 6, pp. 904-909. http://geodesic.mathdoc.fr/item/MZM_2003_73_6_a11/