A Remark on Subgroup Separability in the Class of Finite $\pi$-Groups
Matematičeskie zametki, Tome 73 (2003) no. 6, pp. 904-909

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that if a group $G$ is residually $\mathscr N$, then for every $\mathscr N$-subgroup of the group $G$, the set of $\pi'$-roots from this subgroup is a $\pi$-separable $\mathscr N$-subgroup.
@article{MZM_2003_73_6_a11,
     author = {E. V. Sokolov},
     title = {A {Remark} on {Subgroup} {Separability} in the {Class} of {Finite} $\pi${-Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {904--909},
     publisher = {mathdoc},
     volume = {73},
     number = {6},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_6_a11/}
}
TY  - JOUR
AU  - E. V. Sokolov
TI  - A Remark on Subgroup Separability in the Class of Finite $\pi$-Groups
JO  - Matematičeskie zametki
PY  - 2003
SP  - 904
EP  - 909
VL  - 73
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_6_a11/
LA  - ru
ID  - MZM_2003_73_6_a11
ER  - 
%0 Journal Article
%A E. V. Sokolov
%T A Remark on Subgroup Separability in the Class of Finite $\pi$-Groups
%J Matematičeskie zametki
%D 2003
%P 904-909
%V 73
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_6_a11/
%G ru
%F MZM_2003_73_6_a11
E. V. Sokolov. A Remark on Subgroup Separability in the Class of Finite $\pi$-Groups. Matematičeskie zametki, Tome 73 (2003) no. 6, pp. 904-909. http://geodesic.mathdoc.fr/item/MZM_2003_73_6_a11/