A Remark on Subgroup Separability in the Class of Finite $\pi$-Groups
Matematičeskie zametki, Tome 73 (2003) no. 6, pp. 904-909.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that if a group $G$ is residually $\mathscr N$, then for every $\mathscr N$-subgroup of the group $G$, the set of $\pi'$-roots from this subgroup is a $\pi$-separable $\mathscr N$-subgroup.
@article{MZM_2003_73_6_a11,
     author = {E. V. Sokolov},
     title = {A {Remark} on {Subgroup} {Separability} in the {Class} of {Finite} $\pi${-Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {904--909},
     publisher = {mathdoc},
     volume = {73},
     number = {6},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_6_a11/}
}
TY  - JOUR
AU  - E. V. Sokolov
TI  - A Remark on Subgroup Separability in the Class of Finite $\pi$-Groups
JO  - Matematičeskie zametki
PY  - 2003
SP  - 904
EP  - 909
VL  - 73
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_6_a11/
LA  - ru
ID  - MZM_2003_73_6_a11
ER  - 
%0 Journal Article
%A E. V. Sokolov
%T A Remark on Subgroup Separability in the Class of Finite $\pi$-Groups
%J Matematičeskie zametki
%D 2003
%P 904-909
%V 73
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_6_a11/
%G ru
%F MZM_2003_73_6_a11
E. V. Sokolov. A Remark on Subgroup Separability in the Class of Finite $\pi$-Groups. Matematičeskie zametki, Tome 73 (2003) no. 6, pp. 904-909. http://geodesic.mathdoc.fr/item/MZM_2003_73_6_a11/

[1] Maltsev A. I., “O gomomorfizmakh na konechnye gruppy”, Uchenye zapiski Ivan. gos. ped. in-ta, 18 (1958), 49–60 | Zbl

[2] Kholl F., “Nilpotentnye gruppy”, Matematika. Periodicheskii sbornik perevodov inostrannykh statei, no. 1, Mir, M., 1968, 3–36

[3] Baumslag G., “On the residual nilpotence of certain one-relator groups”, Comm. Pure Appl. Math., 21:5 (1968), 491–506 | DOI | MR | Zbl

[4] Azarov D. N., “O nilpotentnoi approksimiruemosti svobodnykh proizvedenii svobodnykh grupp s tsiklicheskim ob'edineniem”, Matem. zametki, 64:1 (1998), 3–8 | MR | Zbl

[5] Loginova E. D., “Finitnaya approksimiruemost svobodnogo proizvedeniya dvukh grupp s kommutiruyuschimi podgruppami”, Sib. matem. zh., 40:2 (1999), 395–407 | MR | Zbl