Four-Dimensional Terminal Gorenstein Quotient Singularities
Matematičeskie zametki, Tome 73 (2003) no. 6, pp. 813-820.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we classify the finite subgroups $G\subset\operatorname{GL}_4(\mathbb C)$ such that the quotient $\mathbb C^4$ by the action $G$ has only isolated terminal Gorenstein singularities.
@article{MZM_2003_73_6_a1,
     author = {R. E. Anno},
     title = {Four-Dimensional {Terminal} {Gorenstein} {Quotient} {Singularities}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {813--820},
     publisher = {mathdoc},
     volume = {73},
     number = {6},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_6_a1/}
}
TY  - JOUR
AU  - R. E. Anno
TI  - Four-Dimensional Terminal Gorenstein Quotient Singularities
JO  - Matematičeskie zametki
PY  - 2003
SP  - 813
EP  - 820
VL  - 73
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_6_a1/
LA  - ru
ID  - MZM_2003_73_6_a1
ER  - 
%0 Journal Article
%A R. E. Anno
%T Four-Dimensional Terminal Gorenstein Quotient Singularities
%J Matematičeskie zametki
%D 2003
%P 813-820
%V 73
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_6_a1/
%G ru
%F MZM_2003_73_6_a1
R. E. Anno. Four-Dimensional Terminal Gorenstein Quotient Singularities. Matematičeskie zametki, Tome 73 (2003) no. 6, pp. 813-820. http://geodesic.mathdoc.fr/item/MZM_2003_73_6_a1/

[1] Reid M., “Young person's guide to canonical singularities”, Algebraic geometry, Bowdoin, 1985, Part 1 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math., 46, Amer. Math. Soc., Providence, RI, 1987, 345–414

[2] Reid M., “Canonical $3$-folds”, Algebraic Geometry, Journées de Géometrie Algébrique d'Angers (Juillet 1979), Sijthoff Noordhoff, Angers, 1979, 273–310

[3] Mori S., “On $3$-dimensional terminal singularities”, Nagoya Math. J., 98 (1985), 43–66 | MR | Zbl

[4] Morrison D., Stevens G., “Terminal quotient singularities in dimensions three and four”, Proc. Amer. Math. Soc., 90:1 (1984), 15–20 | DOI | MR | Zbl

[5] Mori S., Morrison D., Morrison I., “On four-dimensional terminal quotient singularities”, Math. Comp., 51:184 (1988), 769–786 | DOI | MR | Zbl

[6] Markushevich D., Prokhorov Yu. G., “Exceptional quotient singularities”, Amer. J. Math., 121:6 (1999), 1179–1189 | DOI | MR | Zbl

[7] Springer T., Teoriya invariantov, Mir, M., 1981 | Zbl