Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2003_73_5_a9, author = {S. B. Tabaldyev}, title = {Noninjectivity of the {Predual} {Bimodule} of the {Measure} {Algebra} for {Infinite} {Discrete} {Groups}}, journal = {Matemati\v{c}eskie zametki}, pages = {735--742}, publisher = {mathdoc}, volume = {73}, number = {5}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_5_a9/} }
TY - JOUR AU - S. B. Tabaldyev TI - Noninjectivity of the Predual Bimodule of the Measure Algebra for Infinite Discrete Groups JO - Matematičeskie zametki PY - 2003 SP - 735 EP - 742 VL - 73 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2003_73_5_a9/ LA - ru ID - MZM_2003_73_5_a9 ER -
S. B. Tabaldyev. Noninjectivity of the Predual Bimodule of the Measure Algebra for Infinite Discrete Groups. Matematičeskie zametki, Tome 73 (2003) no. 5, pp. 735-742. http://geodesic.mathdoc.fr/item/MZM_2003_73_5_a9/
[1] Johnson B. E., Cohomology in Banach algebras, Mem. Amer. Math. Soc., 127, 1972 | Zbl
[2] Runde V., Lectures on Amenability, Lecture Notes in Math., 1774, Springer-Verlag, Berlin, 2002
[3] Connes A., “On the Cohomology of Operator Algebras”, J. Funct. Anal., 28 (1978), 248–253 | DOI | MR | Zbl
[4] Haagerup U., “All nuclear algebras are amenable”, Invent. Math., 74 (1985), 305–316 | DOI | MR
[5] Bunce J. W., Paschke W. L., “Quasi-expectations and amenable von Neumann algebras”, Proc. Amer. Math. Soc., 71 (1978), 232–236 | DOI | MR | Zbl
[6] Runde V., “Amenability for dual Banach algebras”, Studia Math., 148 (2001), 47–66 | DOI | MR | Zbl
[7] Runde V., Connes-amenability and normal, virtual diagonals for measure algebras, Pdf-file, 2001
[8] Corach G., Galé J. E., “Averaging with virtual diagonals and geometry of representations”, Banach Algebras '97, eds. E. Albrecht, M. Mathieu, Walter de Gruyter, 1998, 87–100 | MR | Zbl
[9] Dales H. G., Ghahramani F., Helemskii A. Ya., “The amenability of measure algebras”, J. London Math. Soc. (2), 66:1 (2002), 213–226 | DOI | MR | Zbl
[10] Wassermann S., “On Tensor products of certain group $C^*$-algebras”, J. Funct. Anal., 23 (1976), 239–254 | DOI | MR | Zbl
[11] Johnson B. E., Kadison R. V., Ringrose J., “Cohomology of operator algebras, III”, Bull. Soc. Math. France, 100 (1972), 73–96 | MR | Zbl
[12] Johnson B. E., Kadison R. V., Ringrose J., “Cohomology of operator algebras. I: Type I von Neumann algebras”, Acta Math., 126 (1976), 227–243
[13] Johnson B. E., Kadison R. V., Ringrose J., “Cohomology of operator algebras, II”, Ark. Math., 9 (1971), 55–63 | DOI | MR
[14] Elliott G. A., “On approximately finite-dimensional von Neumann algebras, II”, Canad. Math. Bull., 21 (1978), 415–418 | MR | Zbl
[15] Connes A., “Classification of injective factors”, Ann. of Math., 104:1 (1976), 73–115 | DOI | MR | Zbl
[16] Khelemskii A. Ya., “Gomologicheskaya suschnost amenabelnosti po Konnu – in'ektivnost predualnogo bimodulya”, Matem. sb., 180:12 (1989), 1680–1690
[17] Khelemskii A. Ya., Gomologiya v banakhovykh i topologicheskikh algebrakh, Izd. MGU, M., 1986
[18] Phillips R. S., “On linear transformations”, Trans. Amer. Math. Soc., 48 (1940), 516–541 | DOI | MR | Zbl
[19] Effros E. G., “Amenability and virtual diagonals for von Neumann algebras”, J. Funct. Anal., 78 (1988), 137–153 | DOI | MR | Zbl
[20] Runde V., Connes-amenability and normal, virtual diagonals for measure algebras, II, Pdf-file, 2001