Noninjectivity of the Predual Bimodule of the Measure Algebra for Infinite Discrete Groups
Matematičeskie zametki, Tome 73 (2003) no. 5, pp. 735-742.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, it is proved that the predual bimodule of the measure algebra of an infinite discrete group is not injective despite the fact that the measure algebra of an amenable group is amenable in the sense of Connes. Thus the well-known result of Khelemskii (claiming that, for a von Neumann algebra, Connes-amenability is equivalent to the condition that the predual bimodule is injective) cannot be extended to measure algebras. Moreover, for a discrete amenable group, we give a simple formula for a normal virtual diagonal of the measure algebra. It is shown that a certain canonical bimodule over the measure algebra is not normal.
@article{MZM_2003_73_5_a9,
     author = {S. B. Tabaldyev},
     title = {Noninjectivity of the {Predual} {Bimodule} of the {Measure} {Algebra} for {Infinite} {Discrete} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {735--742},
     publisher = {mathdoc},
     volume = {73},
     number = {5},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_5_a9/}
}
TY  - JOUR
AU  - S. B. Tabaldyev
TI  - Noninjectivity of the Predual Bimodule of the Measure Algebra for Infinite Discrete Groups
JO  - Matematičeskie zametki
PY  - 2003
SP  - 735
EP  - 742
VL  - 73
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_5_a9/
LA  - ru
ID  - MZM_2003_73_5_a9
ER  - 
%0 Journal Article
%A S. B. Tabaldyev
%T Noninjectivity of the Predual Bimodule of the Measure Algebra for Infinite Discrete Groups
%J Matematičeskie zametki
%D 2003
%P 735-742
%V 73
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_5_a9/
%G ru
%F MZM_2003_73_5_a9
S. B. Tabaldyev. Noninjectivity of the Predual Bimodule of the Measure Algebra for Infinite Discrete Groups. Matematičeskie zametki, Tome 73 (2003) no. 5, pp. 735-742. http://geodesic.mathdoc.fr/item/MZM_2003_73_5_a9/

[1] Johnson B. E., Cohomology in Banach algebras, Mem. Amer. Math. Soc., 127, 1972 | Zbl

[2] Runde V., Lectures on Amenability, Lecture Notes in Math., 1774, Springer-Verlag, Berlin, 2002

[3] Connes A., “On the Cohomology of Operator Algebras”, J. Funct. Anal., 28 (1978), 248–253 | DOI | MR | Zbl

[4] Haagerup U., “All nuclear algebras are amenable”, Invent. Math., 74 (1985), 305–316 | DOI | MR

[5] Bunce J. W., Paschke W. L., “Quasi-expectations and amenable von Neumann algebras”, Proc. Amer. Math. Soc., 71 (1978), 232–236 | DOI | MR | Zbl

[6] Runde V., “Amenability for dual Banach algebras”, Studia Math., 148 (2001), 47–66 | DOI | MR | Zbl

[7] Runde V., Connes-amenability and normal, virtual diagonals for measure algebras, Pdf-file, 2001

[8] Corach G., Galé J. E., “Averaging with virtual diagonals and geometry of representations”, Banach Algebras '97, eds. E. Albrecht, M. Mathieu, Walter de Gruyter, 1998, 87–100 | MR | Zbl

[9] Dales H. G., Ghahramani F., Helemskii A. Ya., “The amenability of measure algebras”, J. London Math. Soc. (2), 66:1 (2002), 213–226 | DOI | MR | Zbl

[10] Wassermann S., “On Tensor products of certain group $C^*$-algebras”, J. Funct. Anal., 23 (1976), 239–254 | DOI | MR | Zbl

[11] Johnson B. E., Kadison R. V., Ringrose J., “Cohomology of operator algebras, III”, Bull. Soc. Math. France, 100 (1972), 73–96 | MR | Zbl

[12] Johnson B. E., Kadison R. V., Ringrose J., “Cohomology of operator algebras. I: Type I von Neumann algebras”, Acta Math., 126 (1976), 227–243

[13] Johnson B. E., Kadison R. V., Ringrose J., “Cohomology of operator algebras, II”, Ark. Math., 9 (1971), 55–63 | DOI | MR

[14] Elliott G. A., “On approximately finite-dimensional von Neumann algebras, II”, Canad. Math. Bull., 21 (1978), 415–418 | MR | Zbl

[15] Connes A., “Classification of injective factors”, Ann. of Math., 104:1 (1976), 73–115 | DOI | MR | Zbl

[16] Khelemskii A. Ya., “Gomologicheskaya suschnost amenabelnosti po Konnu – in'ektivnost predualnogo bimodulya”, Matem. sb., 180:12 (1989), 1680–1690

[17] Khelemskii A. Ya., Gomologiya v banakhovykh i topologicheskikh algebrakh, Izd. MGU, M., 1986

[18] Phillips R. S., “On linear transformations”, Trans. Amer. Math. Soc., 48 (1940), 516–541 | DOI | MR | Zbl

[19] Effros E. G., “Amenability and virtual diagonals for von Neumann algebras”, J. Funct. Anal., 78 (1988), 137–153 | DOI | MR | Zbl

[20] Runde V., Connes-amenability and normal, virtual diagonals for measure algebras, II, Pdf-file, 2001