Characteristic Properties of Almost Hermitian Structures on Homogeneous Reductive Spaces
Matematičeskie zametki, Tome 73 (2003) no. 5, pp. 676-683.

Voir la notice de l'article provenant de la source Math-Net.Ru

Homogeneous reductive almost Hermitian spaces are considered. For such spaces satisfying a certain simple algebraic condition, criteria providing simple descriptions of Kähler, nearly Kähler, almost Kähler, quasi-Kähler, and $G_1$ structures are obtained. It is found that, under this condition, Kähler structures can occur only on locally symmetric spaces and nearly Kähler structures, on naturally reductive spaces. Almost Kähler, quasi-Kähler, and $G_1$ structures are described by simple conditions imposed on the Nomizu function $\alpha$ of the Riemannian connection of a homogeneous reductive almost Hermitian space.
@article{MZM_2003_73_5_a4,
     author = {O. V. Dashevich},
     title = {Characteristic {Properties} of {Almost} {Hermitian} {Structures} on {Homogeneous} {Reductive} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {676--683},
     publisher = {mathdoc},
     volume = {73},
     number = {5},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_5_a4/}
}
TY  - JOUR
AU  - O. V. Dashevich
TI  - Characteristic Properties of Almost Hermitian Structures on Homogeneous Reductive Spaces
JO  - Matematičeskie zametki
PY  - 2003
SP  - 676
EP  - 683
VL  - 73
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_5_a4/
LA  - ru
ID  - MZM_2003_73_5_a4
ER  - 
%0 Journal Article
%A O. V. Dashevich
%T Characteristic Properties of Almost Hermitian Structures on Homogeneous Reductive Spaces
%J Matematičeskie zametki
%D 2003
%P 676-683
%V 73
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_5_a4/
%G ru
%F MZM_2003_73_5_a4
O. V. Dashevich. Characteristic Properties of Almost Hermitian Structures on Homogeneous Reductive Spaces. Matematičeskie zametki, Tome 73 (2003) no. 5, pp. 676-683. http://geodesic.mathdoc.fr/item/MZM_2003_73_5_a4/

[1] Gray A., Hervella L., “The sixteen classes of almost Hermitian manifolds and their linear invariants”, Ann. Math. Pura Appl., 123 (1980), 35–58 | DOI | MR | Zbl

[2] Wolf J., Gray A., “Homogeneous spaces defined by Lie group automorphisms”, J. Diff. Geometry, 2:1–2 (1968), 77–114; 115–159 | MR | Zbl

[3] Stepanov N. A., “Odnorodnye $3$-tsiklicheskie prostranstva”, Izv. vuzov. Matem., 1967, no. 12, 65–74 | MR | Zbl

[4] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 2, Nauka, M., 1981

[5] Hervella L., Vidal E., “Nouvelles géométries pseudo-kählériennes $G_1$ et $G_2$”, C. R. Acad. Sci. Paris, 283 (1976), 115–118 | MR | Zbl

[6] Gray A., “Riemannian manifolds with geodesic symmetries of order $3$”, J. Diff. Geometry, 7:3–4 (1972), 343–369 | MR | Zbl

[7] Balaschenko V. V., Stepanov N. A., “Kanonicheskie affinornye struktury klassicheskogo tipa na regulyarnykh $\Phi$-prostranstvakh”, Matem. sb., 186:11 (1995), 3–34 | MR | Zbl

[8] Stepanov N. A., “Osnovnye fakty teorii $\varphi $-prostranstv”, Izv. vuzov. Matem., 1967, no. 3, 88–95 | MR | Zbl

[9] Balaschenko V. V., “Invariantnye osnascheniya i indutsirovannye svyaznosti na regulyarnykh $\Phi$-prostranstvakh lineinykh grupp Li”, Dokl. AN BSSR, 23:3 (1979), 209–212 | MR | Zbl

[10] Balaschenko V. V., “Indutsirovannye svyaznosti na odnorodnykh $3$-tsiklicheskikh prostranstvakh lineinykh grupp Li”, Differents. geometriya mnogoobrazii figur, no. 18, Kaliningrad, 1987, 10–13 | Zbl

[11] Balaschenko V. V., Churbanov Yu. D., “Invariantnye struktury na odnorodnykh $\Phi$-prostranstvakh poryadka $5$”, UMN, 45:1 (1990), 169–170 | MR

[12] Churbanov Yu. D., “O nekotorykh klassakh odnorodnykh $\Phi$-prostranstv poryadka 5”, Izv. vuzov. Matem., 1992, no. 2, 88–90 | MR | Zbl

[13] Balashchenko V., Riemannian geometry of canonical structures on regular $\Phi$-spaces, Bochum. Fakultät für Mathematik der Ruhr. Preprint No 174/1994, Universität Bochum, p. 1–19

[14] Dashevich O. V., “Kanonicheskie struktury klassicheskogo tipa na regulyarnykh $\Phi$-prostranstvakh i invariantnye affinnye svyaznosti”, Izv. vuzov. Matem., 1998, no. 10, 23–31 | MR | Zbl