Well-Definedness of the Cauchy Problem for the One-Dimensional Equations of Viscous Heat Conducting Gas with Initial Data from Lebesgue Spaces
Matematičeskie zametki, Tome 73 (2003) no. 5, pp. 779-783.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_2003_73_5_a14,
     author = {A. A. Zlotnik and Sun Jiang},
     title = {Well-Definedness of the {Cauchy} {Problem} for the {One-Dimensional} {Equations} of {Viscous} {Heat} {Conducting} {Gas} with {Initial} {Data} from {Lebesgue} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {779--783},
     publisher = {mathdoc},
     volume = {73},
     number = {5},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_5_a14/}
}
TY  - JOUR
AU  - A. A. Zlotnik
AU  - Sun Jiang
TI  - Well-Definedness of the Cauchy Problem for the One-Dimensional Equations of Viscous Heat Conducting Gas with Initial Data from Lebesgue Spaces
JO  - Matematičeskie zametki
PY  - 2003
SP  - 779
EP  - 783
VL  - 73
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_5_a14/
LA  - ru
ID  - MZM_2003_73_5_a14
ER  - 
%0 Journal Article
%A A. A. Zlotnik
%A Sun Jiang
%T Well-Definedness of the Cauchy Problem for the One-Dimensional Equations of Viscous Heat Conducting Gas with Initial Data from Lebesgue Spaces
%J Matematičeskie zametki
%D 2003
%P 779-783
%V 73
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_5_a14/
%G ru
%F MZM_2003_73_5_a14
A. A. Zlotnik; Sun Jiang. Well-Definedness of the Cauchy Problem for the One-Dimensional Equations of Viscous Heat Conducting Gas with Initial Data from Lebesgue Spaces. Matematičeskie zametki, Tome 73 (2003) no. 5, pp. 779-783. http://geodesic.mathdoc.fr/item/MZM_2003_73_5_a14/

[1] Antontsev S. N., Kazhikhov A. V., Monakhov V. N., Kraevye zadachi mekhaniki neodnorodnoi zhidkosti, Nauka, Novosibirsk, 1983 | Zbl

[2] Kazhikhov A. V., Sib. matem. zh., 23:1 (1982), 44–49 | MR | Zbl

[3] Smagulov Sh. S., Durmagambetov A. A., Iskenderova D. A., Differents. uravneniya, 29:2 (1993), 337–348 | MR | Zbl

[4] Amosov A. A., Zlotnik A. A., Dokl. AN SSSR, 301:1 (1988), 11–15 | Zbl

[5] Amosov A. A., Zlotnik A. A., Matem. zametki, 52:2 (1992), 3–16 | MR | Zbl

[6] Fujita-Yashima H., Padula M., Novotný A., Ricerche di Matematica, 42:2 (1993), 199–248 | MR | Zbl

[7] Amosov A. A., Zlotnik A. A., Izv. vuzov. Matem., 1997, no. 4, 3–19 | MR | Zbl

[8] Zlotnik A. A., Amosov A. A., Sib. matem. zh., 38:4 (1997), 767–789 | MR | Zbl

[9] Zlotnik A. A., Amosov A. A., Matem. zametki, 63:6 (1998), 835–846 | MR | Zbl

[10] Serre D., C.R. Acad. Sci. Paris. Sér. I, 303:14 (1986), 703–706 | MR | Zbl

[11] Jiang S., Zhang P., Quart. Appl. Math. (to appear)

[12] Hoff D., J. Diff. Equations, 95:1 (1992), 33–74 | DOI | MR | Zbl

[13] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[14] Amosov A. A., Zlotnik A. A., Differents. uravneniya, 33:1 (1997), 83–95 | MR | Zbl

[15] Lions P. L., Mathematical Topics in Fluid Mechanics. V. 2. Compressible Models, Clarendon Press, Oxford, 1998