Action of Convolution and Toeplitz Operators in Spaces of BMOA type
Matematičeskie zametki, Tome 73 (2003) no. 5, pp. 759-772 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we describe coefficient multipliers, study the action of fractional derivatives of spaces of BMOA type and the action of Toeplitz operators in these classes.
@article{MZM_2003_73_5_a12,
     author = {R. F. Shamoyan},
     title = {Action of {Convolution} and {Toeplitz} {Operators} in {Spaces} of {BMOA} type},
     journal = {Matemati\v{c}eskie zametki},
     pages = {759--772},
     year = {2003},
     volume = {73},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_5_a12/}
}
TY  - JOUR
AU  - R. F. Shamoyan
TI  - Action of Convolution and Toeplitz Operators in Spaces of BMOA type
JO  - Matematičeskie zametki
PY  - 2003
SP  - 759
EP  - 772
VL  - 73
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_5_a12/
LA  - ru
ID  - MZM_2003_73_5_a12
ER  - 
%0 Journal Article
%A R. F. Shamoyan
%T Action of Convolution and Toeplitz Operators in Spaces of BMOA type
%J Matematičeskie zametki
%D 2003
%P 759-772
%V 73
%N 5
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_5_a12/
%G ru
%F MZM_2003_73_5_a12
R. F. Shamoyan. Action of Convolution and Toeplitz Operators in Spaces of BMOA type. Matematičeskie zametki, Tome 73 (2003) no. 5, pp. 759-772. http://geodesic.mathdoc.fr/item/MZM_2003_73_5_a12/

[1] Mateleviĉ M., Pavloviĉ M., “Multipliers of $H^p$ and BMOA”, Pacific J. Math., 146 (1990), 71–84 | MR

[2] Kehe Zhu, “Duality of Bloch spaces and norm convergence of Taylor series”, Michigan Math. J., 38 (1991), 89–101 | DOI | MR

[3] Zabulionis A., “On the differential operator in the analytic function spaces”, Litovsk. Mat. Sb., 24:1 (1984), 53–59 | MR | Zbl

[4] Shamoyan F. A., “Teplitsevy operatory v nekotorykh prostranstvakh golomorfnykh funktsii i novaya kharakteristika klassov VMOA”, Izv. AN. ArmSSR, 1987, no. 2, 122–132 | MR | Zbl

[5] Garnett D. Zh., Ogranichennye analiticheskie funktsii, Mir, M., 1984 | Zbl

[6] Shamoyan R. F., “Obobschennoe preobrazovanie Khardi i operatory Teplitsa v prostranstvakh tipa VMOA”, Ukr. matem. zh., 53:9 (2001), 1260–1271 | MR | Zbl

[7] Ortega J. M., Fabrega J., “Hardy inequality and embeddings in holomorphic Triebel–Lizorkin spaces”, Illinois Math. J., 43:4 (1999), 733–751 | MR | Zbl

[8] Ortega J. M., Fabrega J., “Pointwise multipliers and corona-type decomposition in BMOA”, Ann Inst. Four. Gren., 46:1 (1996), 111–137 | MR | Zbl

[9] Shamoyan R. F., Multiplikatory stepennykh ryadov, operatory Teplitsa i dvoistvennost v nekotorykh prostranstvakh golomorfnykh v polikruge funktsii, Diss. ... kand. fiz.-matem. nauk, M., 2001

[10] Tribel Kh., Teoriya funktsionalnykh prostranstv, Mir, M., 1986 | Zbl

[11] Shamoyan R. F., “O multiplikatorakh iz prostranstv tipa Bergmana v prostranstva Khardi v polikruge”, Ukr. matem. zh., 10 (2000), 405–415

[12] Shamoyan R. F., “Multiplikatory stepennykh ryadov, operatory Teplitsa i teoretiko-mnozhestvennye vlozheniya prostranstv Khardi–Soboleva–Dzhrbashyana”, Izv. AN Resp. Armeniya, 1999, no. 4, 43–59 | MR | Zbl

[13] Shvedenko S. V., “Klassy Khardi i svyazannye s nimi prostranstva analiticheskikh funktsii v edinichnom kruge i share”, Itogi nauki i tekhniki. Matem. analiz, 23, M., 1985, 3–123 | MR

[14] Shamoyan R. F., “O kharakteristikakh tipa $VMO$ odnogo klassa golomorfnykh v kruge funktsii”, Sib. matem. zh., 44:3 (2003), 686–712 (to appear) | MR | Zbl

[15] Buckley S. M., Koskela P., Vukotiĉ D., “Fractional integration, differentiation, and weighted Bergman spaces”, Proc. Cambridge Philos. Soc., 1999, no. 2, 377–385

[16] Djrbashian A., Shamoyan F., “Topics in the theory of $A^p_\alpha$ spaces”, Teubner Texte zur Math., 105, 1988, 1–199 | MR

[17] Yevtiĉ M., Pavloviĉ M., “Coefficient multipliers on spaces of analytic functions”, Acta Sci. Math., 64 (1998), 531–545 | MR

[18] Shirokov N. K., Analytic Functions Smooth up to the Boundary, Lecture Notes in Math., Springer, 1988 | Zbl

[19] Janson S., Petre J., “Semmes, Hankel, and Toeplitz operators on some spaces of analytic functions”, Duke Math. J., 1983, 936–957

[20] Aleksandrov A. B., Peller V. V., “Hankel operators and similarity to a contraction”, Intern. Math. Res. Notes, 1996, no. 9, 263–275 | DOI | Zbl