Varieties of Complete Pairs of Zero-Dimensional Subschemes of Lengths $\ge2$ and $\ge4$ in Algebraic Surfaces
Matematičeskie zametki, Tome 73 (2003) no. 5, pp. 743-752
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that the varieties $X_{d_1d_2}$ of complete pairs of zero-dimensional subschemes of lengths $d_1\ge2$, $d_2\ge4$ on a smooth irreducible projective algebraic surface are singular.
@article{MZM_2003_73_5_a10,
author = {N. V. Timofeeva},
title = {Varieties of {Complete} {Pairs} of {Zero-Dimensional} {Subschemes} of {Lengths} $\ge2$ and $\ge4$ in {Algebraic} {Surfaces}},
journal = {Matemati\v{c}eskie zametki},
pages = {743--752},
publisher = {mathdoc},
volume = {73},
number = {5},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_5_a10/}
}
TY - JOUR AU - N. V. Timofeeva TI - Varieties of Complete Pairs of Zero-Dimensional Subschemes of Lengths $\ge2$ and $\ge4$ in Algebraic Surfaces JO - Matematičeskie zametki PY - 2003 SP - 743 EP - 752 VL - 73 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2003_73_5_a10/ LA - ru ID - MZM_2003_73_5_a10 ER -
N. V. Timofeeva. Varieties of Complete Pairs of Zero-Dimensional Subschemes of Lengths $\ge2$ and $\ge4$ in Algebraic Surfaces. Matematičeskie zametki, Tome 73 (2003) no. 5, pp. 743-752. http://geodesic.mathdoc.fr/item/MZM_2003_73_5_a10/