Varieties of Complete Pairs of Zero-Dimensional Subschemes of Lengths $\ge2$ and $\ge4$ in Algebraic Surfaces
Matematičeskie zametki, Tome 73 (2003) no. 5, pp. 743-752
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove that the varieties $X_{d_1d_2}$ of complete pairs of zero-dimensional subschemes of lengths $d_1\ge2$, $d_2\ge4$ on a smooth irreducible projective algebraic surface are singular.
@article{MZM_2003_73_5_a10,
author = {N. V. Timofeeva},
title = {Varieties of {Complete} {Pairs} of {Zero-Dimensional} {Subschemes} of {Lengths} $\ge2$ and $\ge4$ in {Algebraic} {Surfaces}},
journal = {Matemati\v{c}eskie zametki},
pages = {743--752},
year = {2003},
volume = {73},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_5_a10/}
}
TY - JOUR AU - N. V. Timofeeva TI - Varieties of Complete Pairs of Zero-Dimensional Subschemes of Lengths $\ge2$ and $\ge4$ in Algebraic Surfaces JO - Matematičeskie zametki PY - 2003 SP - 743 EP - 752 VL - 73 IS - 5 UR - http://geodesic.mathdoc.fr/item/MZM_2003_73_5_a10/ LA - ru ID - MZM_2003_73_5_a10 ER -
N. V. Timofeeva. Varieties of Complete Pairs of Zero-Dimensional Subschemes of Lengths $\ge2$ and $\ge4$ in Algebraic Surfaces. Matematičeskie zametki, Tome 73 (2003) no. 5, pp. 743-752. http://geodesic.mathdoc.fr/item/MZM_2003_73_5_a10/
[1] Tikhomirov A. S., “Mnogoobrazie polnykh par nulmernykh podskhem algebraicheskoi poverkhnosti”, Izv. RAN. Ser. matem., 61:6 (1997), 153–180 | MR | Zbl
[2] Timofeeva N. V., “Gladkost i eilerova kharakteristika mnogoobraziya polnykh par $X_{23}$ nulmernykh podskhem dliny 2 i 3 algebraicheskoi poverkhnosti”, Matem. zametki, 67:2 (2000), 276–287 | MR | Zbl
[3] Briançon J., “Description de $\operatorname{Hilb}^n\mathbb C\{x,y\}$”, Invent. Math., 41 (1977), 45–89 | DOI | MR | Zbl
[4] Mamford D., Lektsii o krivykh na algebraicheskoi poverkhnosti, Mir, M., 1968