Domains of $t$-Functions
Matematičeskie zametki, Tome 73 (2003) no. 4, pp. 573-576
Cet article a éte moissonné depuis la source Math-Net.Ru
A nonempty and nonconstant partial recursive function such that any function resembling it is recursively isomorphic to it is called a $t$-function. It is proved that the domain of any $t$-function is neither a simple nor a pseudosimple set.
@article{MZM_2003_73_4_a8,
author = {N. V. Litvinov},
title = {Domains of $t${-Functions}},
journal = {Matemati\v{c}eskie zametki},
pages = {573--576},
year = {2003},
volume = {73},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_4_a8/}
}
N. V. Litvinov. Domains of $t$-Functions. Matematičeskie zametki, Tome 73 (2003) no. 4, pp. 573-576. http://geodesic.mathdoc.fr/item/MZM_2003_73_4_a8/
[1] Rogers H., “On universal function”, Proc. Amer. Math. Soc., 16:1 (1965), 39–44 | DOI | MR | Zbl
[2] Litvinov N. V., “O tipakh skhodstva i rekursivnogo izomorfizma chastichno rekursivnykh funktsii”, Sib. matem. zh., 41:1 (2000), 164–166 | MR | Zbl
[3] Polyakov E. A., “O tipakh skhodstva i rekursivnogo izomorfizma chastichno rekursivnykh funktsii”, Sib. matem. zh., 30:6 (1989), 188–192 | MR | Zbl