Domains of $t$-Functions
Matematičeskie zametki, Tome 73 (2003) no. 4, pp. 573-576.

Voir la notice de l'article provenant de la source Math-Net.Ru

A nonempty and nonconstant partial recursive function such that any function resembling it is recursively isomorphic to it is called a $t$-function. It is proved that the domain of any $t$-function is neither a simple nor a pseudosimple set.
@article{MZM_2003_73_4_a8,
     author = {N. V. Litvinov},
     title = {Domains of $t${-Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {573--576},
     publisher = {mathdoc},
     volume = {73},
     number = {4},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_4_a8/}
}
TY  - JOUR
AU  - N. V. Litvinov
TI  - Domains of $t$-Functions
JO  - Matematičeskie zametki
PY  - 2003
SP  - 573
EP  - 576
VL  - 73
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_4_a8/
LA  - ru
ID  - MZM_2003_73_4_a8
ER  - 
%0 Journal Article
%A N. V. Litvinov
%T Domains of $t$-Functions
%J Matematičeskie zametki
%D 2003
%P 573-576
%V 73
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_4_a8/
%G ru
%F MZM_2003_73_4_a8
N. V. Litvinov. Domains of $t$-Functions. Matematičeskie zametki, Tome 73 (2003) no. 4, pp. 573-576. http://geodesic.mathdoc.fr/item/MZM_2003_73_4_a8/

[1] Rogers H., “On universal function”, Proc. Amer. Math. Soc., 16:1 (1965), 39–44 | DOI | MR | Zbl

[2] Litvinov N. V., “O tipakh skhodstva i rekursivnogo izomorfizma chastichno rekursivnykh funktsii”, Sib. matem. zh., 41:1 (2000), 164–166 | MR | Zbl

[3] Polyakov E. A., “O tipakh skhodstva i rekursivnogo izomorfizma chastichno rekursivnykh funktsii”, Sib. matem. zh., 30:6 (1989), 188–192 | MR | Zbl