A Model in the Theory of Perturbations of the Essential Spectrum of Multiparticle Operators
Matematičeskie zametki, Tome 73 (2003) no. 4, pp. 556-564
Cet article a éte moissonné depuis la source Math-Net.Ru
We find the continuous spectrum of the model Schrödinger operator acting in the direct sum of Hilbert spaces of $n$-particle states, $n=0,1,2,3$.
@article{MZM_2003_73_4_a6,
author = {S. N. Lakaev and T. H. Rasulov},
title = {A {Model} in the {Theory} of {Perturbations} of the {Essential} {Spectrum} of {Multiparticle} {Operators}},
journal = {Matemati\v{c}eskie zametki},
pages = {556--564},
year = {2003},
volume = {73},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_4_a6/}
}
TY - JOUR AU - S. N. Lakaev AU - T. H. Rasulov TI - A Model in the Theory of Perturbations of the Essential Spectrum of Multiparticle Operators JO - Matematičeskie zametki PY - 2003 SP - 556 EP - 564 VL - 73 IS - 4 UR - http://geodesic.mathdoc.fr/item/MZM_2003_73_4_a6/ LA - ru ID - MZM_2003_73_4_a6 ER -
S. N. Lakaev; T. H. Rasulov. A Model in the Theory of Perturbations of the Essential Spectrum of Multiparticle Operators. Matematičeskie zametki, Tome 73 (2003) no. 4, pp. 556-564. http://geodesic.mathdoc.fr/item/MZM_2003_73_4_a6/
[1] Fridrikhs K. O., Vozmuscheniya spektra operatorov v gilbertovom prostranstve, Mir, M., 1972
[2] Minlos R., Spohn H., “The three-body problem in radioactive decay: the case of one atom and at most two photons”, Topics in Statistical and Theoretical Physics, Amer. Math. Soc. Transl. (2), 177, Amer. Math. Soc., Providence (R.I.), 1996, 159–193 | MR | Zbl
[3] Lakaev S. N., “Ob effekte Efimova v sisteme trekh odinakovykh kvantovykh chastits”, Funktsion. analiz i ego prilozh., 27:3 (1993), 15–28 | MR | Zbl
[4] Lakaev S. N., “O beskonechnom chisle trekhchastichnykh svyazannykh sostoyanii sistemy trekh kvantovykh reshetchatykh chastits”, TMF, 89:1 (1991), 94–104 | MR