On the Distance to the Closest Matrix with Triple Zero Eigenvalue
Matematičeskie zametki, Tome 73 (2003) no. 4, pp. 545-555
Cet article a éte moissonné depuis la source Math-Net.Ru
The 2-norm distance from a matrix $A$ to the set $\mathscr M$ of $(n\times n)$ matrices with a zero eigenvalue of multiplicity $\ge3$ is estimated. If $$ Q(\gamma_1,\gamma_2,\gamma_3)=\begin{pmatrix} A&\gamma_1I_n&\gamma_3I_n \\0&A&\gamma_2I_n \\0&0&A \end{pmatrix}, \qquad n\ge3, $$ then $$ \rho_2(A,\mathscr M) \ge\max_{\gamma_1,\gamma_2\ge0,\,\gamma_3\in\mathbb C} \sigma_{3n-2}(Q(\gamma_1,\gamma_2,\gamma_3)), $$ where $\sigma_i(\cdot)$ is the $i$th singular value of the corresponding matrix in the decreasing order of singular values. Moreover, if the maximum on the right-hand side is attained at the point $\gamma^*=(\gamma^*_1,\gamma^*_2,\gamma^*_3)$, where $\gamma^*_1\gamma^*_2\ne0$, then, in fact, one has the exact equality $$ \rho_2(A,\mathscr M) =\sigma_{3n-2}(Q(\gamma^*_1,\gamma^*_2,\gamma^*_3)). $$ This result can be regarded as an extension of Malyshev's formula, which gives the 2-norm distance from $A$ to the set of matrices with a multiple zero eigenvalue.
@article{MZM_2003_73_4_a5,
author = {Kh. D. Ikramov and A. M. Nazari},
title = {On the {Distance} to the {Closest} {Matrix} with {Triple} {Zero} {Eigenvalue}},
journal = {Matemati\v{c}eskie zametki},
pages = {545--555},
year = {2003},
volume = {73},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_4_a5/}
}
Kh. D. Ikramov; A. M. Nazari. On the Distance to the Closest Matrix with Triple Zero Eigenvalue. Matematičeskie zametki, Tome 73 (2003) no. 4, pp. 545-555. http://geodesic.mathdoc.fr/item/MZM_2003_73_4_a5/
[1] Malyshev A. N., “A formula for the $2$-norm distance from a matrix to the set of matrices with multiple eigenvalues”, Numer. Math., 83 (1999), 443–454 | DOI | MR | Zbl
[2] Demmel Dzh., Vychislitelnaya lineinaya algebra. Teoriya i prilozheniya, Mir, M., 2001
[3] Sun J.-G., “A note on simple non-zero singular values”, J. Comput. Math., 6 (1988), 259–266