On the Distance to the Closest Matrix with Triple Zero Eigenvalue
Matematičeskie zametki, Tome 73 (2003) no. 4, pp. 545-555.

Voir la notice de l'article provenant de la source Math-Net.Ru

The 2-norm distance from a matrix $A$ to the set $\mathscr M$ of $(n\times n)$ matrices with a zero eigenvalue of multiplicity $\ge3$ is estimated. If $$ Q(\gamma_1,\gamma_2,\gamma_3)=\begin{pmatrix} A\gamma_1I_n\gamma_3I_n \\0\gamma_2I_n \\00 \end{pmatrix}, \qquad n\ge3, $$ then $$ \rho_2(A,\mathscr M) \ge\max_{\gamma_1,\gamma_2\ge0,\,\gamma_3\in\mathbb C} \sigma_{3n-2}(Q(\gamma_1,\gamma_2,\gamma_3)), $$ where $\sigma_i(\cdot)$ is the $i$th singular value of the corresponding matrix in the decreasing order of singular values. Moreover, if the maximum on the right-hand side is attained at the point $\gamma^*=(\gamma^*_1,\gamma^*_2,\gamma^*_3)$, where $\gamma^*_1\gamma^*_2\ne0$, then, in fact, one has the exact equality $$ \rho_2(A,\mathscr M) =\sigma_{3n-2}(Q(\gamma^*_1,\gamma^*_2,\gamma^*_3)). $$ This result can be regarded as an extension of Malyshev's formula, which gives the 2-norm distance from $A$ to the set of matrices with a multiple zero eigenvalue.
@article{MZM_2003_73_4_a5,
     author = {Kh. D. Ikramov and A. M. Nazari},
     title = {On the {Distance} to the {Closest} {Matrix} with {Triple} {Zero} {Eigenvalue}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {545--555},
     publisher = {mathdoc},
     volume = {73},
     number = {4},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_4_a5/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
AU  - A. M. Nazari
TI  - On the Distance to the Closest Matrix with Triple Zero Eigenvalue
JO  - Matematičeskie zametki
PY  - 2003
SP  - 545
EP  - 555
VL  - 73
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_4_a5/
LA  - ru
ID  - MZM_2003_73_4_a5
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%A A. M. Nazari
%T On the Distance to the Closest Matrix with Triple Zero Eigenvalue
%J Matematičeskie zametki
%D 2003
%P 545-555
%V 73
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_4_a5/
%G ru
%F MZM_2003_73_4_a5
Kh. D. Ikramov; A. M. Nazari. On the Distance to the Closest Matrix with Triple Zero Eigenvalue. Matematičeskie zametki, Tome 73 (2003) no. 4, pp. 545-555. http://geodesic.mathdoc.fr/item/MZM_2003_73_4_a5/

[1] Malyshev A. N., “A formula for the $2$-norm distance from a matrix to the set of matrices with multiple eigenvalues”, Numer. Math., 83 (1999), 443–454 | DOI | MR | Zbl

[2] Demmel Dzh., Vychislitelnaya lineinaya algebra. Teoriya i prilozheniya, Mir, M., 2001

[3] Sun J.-G., “A note on simple non-zero singular values”, J. Comput. Math., 6 (1988), 259–266