Multiplicative Products of Dedekind $\eta$-Functions and Group Representations
Matematičeskie zametki, Tome 73 (2003) no. 4, pp. 511-526

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we findall metacyclic groups ($\langle a,b\colon a^m=e,\,b^s=e,\,b^{-1}ab=a^r\rangle$), where $m=10$, $14$, $15$, $20$, $21$, $22$, such that the cusp forms associated with all elements of these groups by an exact representation are multiplicative $\eta$-products. We also consider the correspondence between multiplicative $\eta$-products and elements of finite order in $SL(5,C)$ by the adjoint representation.
@article{MZM_2003_73_4_a3,
     author = {G. V. Voskresenskaya},
     title = {Multiplicative {Products} of {Dedekind} $\eta${-Functions} and {Group} {Representations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {511--526},
     publisher = {mathdoc},
     volume = {73},
     number = {4},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_4_a3/}
}
TY  - JOUR
AU  - G. V. Voskresenskaya
TI  - Multiplicative Products of Dedekind $\eta$-Functions and Group Representations
JO  - Matematičeskie zametki
PY  - 2003
SP  - 511
EP  - 526
VL  - 73
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_4_a3/
LA  - ru
ID  - MZM_2003_73_4_a3
ER  - 
%0 Journal Article
%A G. V. Voskresenskaya
%T Multiplicative Products of Dedekind $\eta$-Functions and Group Representations
%J Matematičeskie zametki
%D 2003
%P 511-526
%V 73
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_4_a3/
%G ru
%F MZM_2003_73_4_a3
G. V. Voskresenskaya. Multiplicative Products of Dedekind $\eta$-Functions and Group Representations. Matematičeskie zametki, Tome 73 (2003) no. 4, pp. 511-526. http://geodesic.mathdoc.fr/item/MZM_2003_73_4_a3/