Multiplicative Products of Dedekind $\eta$-Functions and Group Representations
Matematičeskie zametki, Tome 73 (2003) no. 4, pp. 511-526.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we findall metacyclic groups ($\langle a,b\colon a^m=e,\,b^s=e,\,b^{-1}ab=a^r\rangle$), where $m=10$, $14$, $15$, $20$, $21$, $22$, such that the cusp forms associated with all elements of these groups by an exact representation are multiplicative $\eta$-products. We also consider the correspondence between multiplicative $\eta$-products and elements of finite order in $SL(5,C)$ by the adjoint representation.
@article{MZM_2003_73_4_a3,
     author = {G. V. Voskresenskaya},
     title = {Multiplicative {Products} of {Dedekind} $\eta${-Functions} and {Group} {Representations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {511--526},
     publisher = {mathdoc},
     volume = {73},
     number = {4},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_4_a3/}
}
TY  - JOUR
AU  - G. V. Voskresenskaya
TI  - Multiplicative Products of Dedekind $\eta$-Functions and Group Representations
JO  - Matematičeskie zametki
PY  - 2003
SP  - 511
EP  - 526
VL  - 73
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_4_a3/
LA  - ru
ID  - MZM_2003_73_4_a3
ER  - 
%0 Journal Article
%A G. V. Voskresenskaya
%T Multiplicative Products of Dedekind $\eta$-Functions and Group Representations
%J Matematičeskie zametki
%D 2003
%P 511-526
%V 73
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_4_a3/
%G ru
%F MZM_2003_73_4_a3
G. V. Voskresenskaya. Multiplicative Products of Dedekind $\eta$-Functions and Group Representations. Matematičeskie zametki, Tome 73 (2003) no. 4, pp. 511-526. http://geodesic.mathdoc.fr/item/MZM_2003_73_4_a3/

[1] Voskresenskaya G. V., “Metatsiklicheskie gruppy i modulyarnye formy”, Matem. zametki, 67:2 (2000), 163–173 | MR | Zbl

[2] Voskresenskaya G. V., “Konechnye gruppy i multiplikativnye $\eta$-proizvedeniya”, Vestnik SamGU, 16 (2000), 18–25 | MR | Zbl

[3] Dummit D., Kisilevsky H., McKay J., “Multiplicative products of $\eta$-functions”, Contemp. Math., 45 (1985), 89–98 | MR | Zbl

[4] Mason G., “Finite groups and Hecke operators”, Math. Ann., 282 (1989), 381–409 | DOI

[5] Mason G., “$M_{24}$ and certain automorphic forms”, Contemp. Math., 45 (1985), 223–244 | Zbl

[6] Koike M., “On McKay's conjecture”, Nagoya Math. J., 95 (1984), 85–89 | MR | Zbl

[7] Kondo T., “Examples of multiplicative $\eta$-products”, Sci. Pap. Coll. Arts and Sci. Univ. Tokyo, 35 (1986), 133–149 | MR | Zbl

[8] Martin Y., Ken O., “Eta-quotients and elliptic curves”, Proc. Amer. Math. Soc., 125:11 (1997), 3169–3176 | DOI | MR | Zbl

[9] Gordon B., Sinor S., “Multiplicative properties of $\eta$-products”, Lecture Notes in Math., 1395, Springer-Verlag, 1989, 173–200

[10] Voskresenskaya G. V., “Modulyarnye formy i predstavleniya grupp diedra”, Matem. zametki, 63:1 (1998), 130–133 | MR | Zbl

[11] Kokseter K. S. M., Mozer U. O. Dzh., Porozhdayuschie elementy i opredelyayuschie sootnosheniya diskretnykh grupp, Nauka, M., 1980

[12] Voskresenskaya G. V., “Parabolicheskie formy i konechnye podgruppy v $SL(5,\mathbb C)$”, Funktsion. analiz i ego pril., 29:2 (1995), 1–73 | MR

[13] Voskresenskaya G. V., “Modulyarnye formy i regulyarnye predstavleniya grupp poryadka $24$”, Matem. zametki, 60:2 (1996), 292–294 | MR | Zbl

[14] Voskresenskaya G. V., “One special class of modular forms and group representations”, J. Théor. Nombres Bordeaux, 11 (1999), 247–262 | MR | Zbl