Identities of Semigroups of Triangular Matrices over Finite Fields
Matematičeskie zametki, Tome 73 (2003) no. 4, pp. 502-510.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the semigroup of all triangular $n\times n$ matrices over a finite field $K$ is inherently nonfinitely based if and only if $n > 3$ and $|K|> 2$.
@article{MZM_2003_73_4_a2,
     author = {M. V. Volkov and I. A. Gol'dberg},
     title = {Identities of {Semigroups} of {Triangular} {Matrices} over {Finite} {Fields}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {502--510},
     publisher = {mathdoc},
     volume = {73},
     number = {4},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_4_a2/}
}
TY  - JOUR
AU  - M. V. Volkov
AU  - I. A. Gol'dberg
TI  - Identities of Semigroups of Triangular Matrices over Finite Fields
JO  - Matematičeskie zametki
PY  - 2003
SP  - 502
EP  - 510
VL  - 73
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_4_a2/
LA  - ru
ID  - MZM_2003_73_4_a2
ER  - 
%0 Journal Article
%A M. V. Volkov
%A I. A. Gol'dberg
%T Identities of Semigroups of Triangular Matrices over Finite Fields
%J Matematičeskie zametki
%D 2003
%P 502-510
%V 73
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_4_a2/
%G ru
%F MZM_2003_73_4_a2
M. V. Volkov; I. A. Gol'dberg. Identities of Semigroups of Triangular Matrices over Finite Fields. Matematičeskie zametki, Tome 73 (2003) no. 4, pp. 502-510. http://geodesic.mathdoc.fr/item/MZM_2003_73_4_a2/

[1] Oates S., Powell M. B., “Identical relations in finite groups”, J. Algebra, 1:1 (1964), 11–39 | DOI | MR | Zbl

[2] Perkins P., “Bases for equational theories of semigroups”, J. Algebra, 11:2 (1969), 298–314 | DOI | MR | Zbl

[3] Shevrin L. N., Volkov M. V., “Tozhdestva polugrupp”, Izv. vuzov. Matem., 1985, no. 11, 3–47 | MR | Zbl

[4] Volkov M. V., “The finite basis problem for finite semigroups”, Math. Japonica, 53:1 (2001), 171–199 | MR | Zbl

[5] Maltsev A. I., Algebraicheskie sistemy, Nauka, M., 1970 | Zbl

[6] Sapir M. V., “Problemy bernsaidovskogo tipa i konechnaya baziruemost v mnogoobraziyakh polugrupp”, Izv. AN SSSR. Ser. matem., 51:2 (1987), 319–340 | Zbl

[7] Klifford A., Preston G., Algebraicheskaya teoriya polugrupp, T. 1, 2, Mir, M., 1972 | Zbl

[8] Shevrin L. N., “K teorii epigrupp, I”, Matem. sb., 185:8 (1994), 129–160 | Zbl

[9] Sapir M. V., “Suschestvenno beskonechno baziruemye konechnye polugruppy”, Matem. sb., 133:2 (1987), 154–166

[10] Jackson M., “Small inherently nonfinitely based finite semigroups”, Semigroup Forum (to appear)