On the Algebra of Pair Integral Operators with Homogeneous Kernels
Matematičeskie zametki, Tome 73 (2003) no. 4, pp. 483-493.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the Banach algebra $\mathfrak A$ generated by multidimensional pair integral operators with homogeneous kernels. We describe necessary and sufficient conditions for operators from the algebra $\mathfrak A$ to be Fredholm and present a formula for calculating the index.
@article{MZM_2003_73_4_a0,
     author = {O. G. Avsyankin},
     title = {On the {Algebra} of {Pair} {Integral} {Operators} with {Homogeneous} {Kernels}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {483--493},
     publisher = {mathdoc},
     volume = {73},
     number = {4},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_4_a0/}
}
TY  - JOUR
AU  - O. G. Avsyankin
TI  - On the Algebra of Pair Integral Operators with Homogeneous Kernels
JO  - Matematičeskie zametki
PY  - 2003
SP  - 483
EP  - 493
VL  - 73
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_4_a0/
LA  - ru
ID  - MZM_2003_73_4_a0
ER  - 
%0 Journal Article
%A O. G. Avsyankin
%T On the Algebra of Pair Integral Operators with Homogeneous Kernels
%J Matematičeskie zametki
%D 2003
%P 483-493
%V 73
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_4_a0/
%G ru
%F MZM_2003_73_4_a0
O. G. Avsyankin. On the Algebra of Pair Integral Operators with Homogeneous Kernels. Matematičeskie zametki, Tome 73 (2003) no. 4, pp. 483-493. http://geodesic.mathdoc.fr/item/MZM_2003_73_4_a0/

[1] Mikhailov L. G., “Novyi klass osobykh integralnykh uravnenii”, Math. Nachr., 76 (1977), 91–107 | DOI | MR | Zbl

[2] Karapetyants N. K., Integralnye operatory svertki i s odnorodnymi yadrami s peremennymi koeffitsientami, Diss. ... d. f.-m. n., Matem. in-t im. Razmadze, Tbilisi, 1989

[3] Karapetiants N., Samko S., Equations with Involutive Operators, Birkhäuser, Boston–Basel–Berlin, 2001 | Zbl

[4] Avsyankin O. G., Karapetyants N. K., “Mnogomernye integralnye operatory s odnorodnymi stepeni $-n$ yadrami”, Dokl. RAN, 368:6 (1999), 727–729 | MR | Zbl

[5] Avsyankin O. G., Karapetyants N. K., Parnye integralnye operatory s odnorodnymi yadrami i ikh prilozheniya, Dep. VINITI 15.12.98 No. 3672–V98, VINITI, M., 1998

[6] Karapetyants N. K., Samko S. G., Uravneniya s involyutivnymi operatorami i ikh prilozheniya, Izd-vo RGU, Rostov-na-Donu, 1988 | Zbl

[7] Gelfand I. M., Raikov D. A., Shilov G. E., Kommutativnye normirovannye koltsa, Fizmatgiz, M., 1960 | Zbl

[8] Gokhberg I. Ts., Feldman I. A., Uravneniya v svertkakh i proektsionnye metody ikh resheniya, Nauka, M., 1971

[9] Krupnik N. Ya., Banakhovy algebry s simvolom i singulyarnye integralnye operatory, Shtiintsa, Kishinev, 1984 | Zbl