On the Maximum of the Modulus and the Maximal Term of Dirichlet Series
Matematičeskie zametki, Tome 73 (2003) no. 3, pp. 437-443.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the Dirichlet series, we obtain a condition on the exponents for which the logarithms of the maximum of the modulus of its sum and of the maximal term are equivalent to the same convex function.
@article{MZM_2003_73_3_a9,
     author = {M. N. Sheremeta},
     title = {On the {Maximum} of the {Modulus} and the {Maximal} {Term} of {Dirichlet} {Series}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {437--443},
     publisher = {mathdoc},
     volume = {73},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a9/}
}
TY  - JOUR
AU  - M. N. Sheremeta
TI  - On the Maximum of the Modulus and the Maximal Term of Dirichlet Series
JO  - Matematičeskie zametki
PY  - 2003
SP  - 437
EP  - 443
VL  - 73
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a9/
LA  - ru
ID  - MZM_2003_73_3_a9
ER  - 
%0 Journal Article
%A M. N. Sheremeta
%T On the Maximum of the Modulus and the Maximal Term of Dirichlet Series
%J Matematičeskie zametki
%D 2003
%P 437-443
%V 73
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a9/
%G ru
%F MZM_2003_73_3_a9
M. N. Sheremeta. On the Maximum of the Modulus and the Maximal Term of Dirichlet Series. Matematičeskie zametki, Tome 73 (2003) no. 3, pp. 437-443. http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a9/

[1] Sheremeta M. N., “O sootnosheniyakh mezhdu maksimalnym chlenom i maksimumom modulya tselogo ryada Dirikhle”, Matem. zametki, 51:5 (1992), 141–148 | MR | Zbl

[2] Sheremeta M. N., Fedynyak S. I., “O proizvodnoi ryada Dirikhle”, Sib. matem. zh., 39:1 (1998), 206–223 | MR | Zbl

[3] Sheremeta M. N., “O povedenii maksimuma modulya tselogo ryada Dirikhle vne isklyuchitelnogo mnozhestva”, Matem. zametki, 57:2 (1995), 283–296 | MR | Zbl