@article{MZM_2003_73_3_a8,
author = {M. E. Changa},
title = {Primes in {Special} {Intervals} and {Additive} {Problems} with {Such} {Numbers}},
journal = {Matemati\v{c}eskie zametki},
pages = {423--436},
year = {2003},
volume = {73},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a8/}
}
M. E. Changa. Primes in Special Intervals and Additive Problems with Such Numbers. Matematičeskie zametki, Tome 73 (2003) no. 3, pp. 423-436. http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a8/
[1] Vinogradov I. M., “Nekotoroe obschee svoistvo raspredeleniya prostykh chisel”, Matem. sb., 7 (49):2 (1940), 365–372 | MR | Zbl
[2] Vinogradov I. M., Osobye varianty metoda trigonometricheskikh summ, Nauka, M., 1976
[3] Linnik Yu. V., “Ob odnoi teoreme teorii prostykh chisel”, Dokl. AN SSSR, 47:1 (1945), 7–8 | MR
[4] Gritsenko S. A., “Ob odnoi zadache I. M. Vinogradova”, Matem. zametki, 39:5 (1986), 625–640 | MR | Zbl
[5] Gritsenko S. A., “Ternarnaya problema Goldbakha i problema Goldbakha–Varinga s prostymi chislami, lezhaschimi v promezhutkakh spetsialnogo vida”, UMN, 43:4 (1988), 203–204 | MR
[6] Vinogradov I. M., “Otsenka odnoi trigonometricheskoi summy po prostym chislam”, Izv. AN SSSR. Ser. matem., 23 (1959), 157–164 | MR | Zbl
[7] Leitmann D., “On the uniform distribution of some sequences”, J. London Math. Soc. (2), 14:3 (1976), 430–432 | DOI | MR | Zbl
[8] Baker R. C., Kolesnik G., “On the distribution of $p^\alpha$ modulo one”, J. Reine Angew. Math., 356 (1985), 174–193 | MR | Zbl
[9] Cao X., Zhai W., “On the distribution of $p^\alpha$ modulo one”, J. Théor. Nombres Bordeaux, 11:2 (1999), 407–423 | MR | Zbl
[10] Vinogradov I. M., Metod trigonometricheskikh summ v teorii chisel, Nauka, M., 1980
[11] Karatsuba A. A., Osnovy analiticheskoi teorii chisel, Nauka, M., 1983
[12] Voronin S. M., Karatsuba A. A., Dzeta-funktsiya Rimana, Fizmatlit, M., 1994
[13] Khua L.-K., Additivnaya teoriya prostykh chisel, Tr. MIAN, 22, Nauka, M.–L., 1947 | MR | Zbl
[14] Estermann T., “Proof that every large integer is the sum of two primes and a square”, Proc. London Math. Soc. Ser. 2, 42 (1937), 501–516 | DOI | Zbl