Primes in Special Intervals and Additive Problems with Such Numbers
Matematičeskie zametki, Tome 73 (2003) no. 3, pp. 423-436

Voir la notice de l'article provenant de la source Math-Net.Ru

We study primes in a special set $E$ which is naturally described by the fractional part of $p^a$, where $a1$ is a noninteger. An asymptotic formula with power lowering in the remainder of the trigonometric sum over primes from the set $E$ is obtained. We study several applications of this result to problems of the distribution of primes from $E$ in arithmetic progressions and to additive problems with primes from $E$.
@article{MZM_2003_73_3_a8,
     author = {M. E. Changa},
     title = {Primes in {Special} {Intervals} and {Additive} {Problems} with {Such} {Numbers}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {423--436},
     publisher = {mathdoc},
     volume = {73},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a8/}
}
TY  - JOUR
AU  - M. E. Changa
TI  - Primes in Special Intervals and Additive Problems with Such Numbers
JO  - Matematičeskie zametki
PY  - 2003
SP  - 423
EP  - 436
VL  - 73
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a8/
LA  - ru
ID  - MZM_2003_73_3_a8
ER  - 
%0 Journal Article
%A M. E. Changa
%T Primes in Special Intervals and Additive Problems with Such Numbers
%J Matematičeskie zametki
%D 2003
%P 423-436
%V 73
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a8/
%G ru
%F MZM_2003_73_3_a8
M. E. Changa. Primes in Special Intervals and Additive Problems with Such Numbers. Matematičeskie zametki, Tome 73 (2003) no. 3, pp. 423-436. http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a8/