On the Rigidity of a Class of Glued Surfaces
Matematičeskie zametki, Tome 73 (2003) no. 3, pp. 416-422

Voir la notice de l'article provenant de la source Math-Net.Ru

The method of integral formulas is applied to prove the rigidity of a class of closed nonconvex surfaces obtained by gluing together regular pieces of surfaces of positive Gaussian curvature with smooth boundaries.
@article{MZM_2003_73_3_a7,
     author = {L. P. Fomenko},
     title = {On the {Rigidity} of a {Class} of {Glued} {Surfaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {416--422},
     publisher = {mathdoc},
     volume = {73},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a7/}
}
TY  - JOUR
AU  - L. P. Fomenko
TI  - On the Rigidity of a Class of Glued Surfaces
JO  - Matematičeskie zametki
PY  - 2003
SP  - 416
EP  - 422
VL  - 73
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a7/
LA  - ru
ID  - MZM_2003_73_3_a7
ER  - 
%0 Journal Article
%A L. P. Fomenko
%T On the Rigidity of a Class of Glued Surfaces
%J Matematičeskie zametki
%D 2003
%P 416-422
%V 73
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a7/
%G ru
%F MZM_2003_73_3_a7
L. P. Fomenko. On the Rigidity of a Class of Glued Surfaces. Matematičeskie zametki, Tome 73 (2003) no. 3, pp. 416-422. http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a7/