On a Class of Multiple Integrals
Matematičeskie zametki, Tome 73 (2003) no. 3, pp. 390-401.

Voir la notice de l'article provenant de la source Math-Net.Ru

A multiple integral encountered in the theory of Gauss–Markov processes is expressed in analytical form.
@article{MZM_2003_73_3_a5,
     author = {R. N. Miroshin},
     title = {On a {Class} of {Multiple} {Integrals}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {390--401},
     publisher = {mathdoc},
     volume = {73},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a5/}
}
TY  - JOUR
AU  - R. N. Miroshin
TI  - On a Class of Multiple Integrals
JO  - Matematičeskie zametki
PY  - 2003
SP  - 390
EP  - 401
VL  - 73
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a5/
LA  - ru
ID  - MZM_2003_73_3_a5
ER  - 
%0 Journal Article
%A R. N. Miroshin
%T On a Class of Multiple Integrals
%J Matematičeskie zametki
%D 2003
%P 390-401
%V 73
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a5/
%G ru
%F MZM_2003_73_3_a5
R. N. Miroshin. On a Class of Multiple Integrals. Matematičeskie zametki, Tome 73 (2003) no. 3, pp. 390-401. http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a5/

[1] Miroshin R. N., “Skhodimost ryadov Raisa i Longe-Khigginsa dlya statsionarnykh gaussovskikh markovskikh protsessov pervogo poryadka”, Teor. veroyatn. i ee prim., 26:1 (1981), 101–120 | MR | Zbl

[2] Miroshin R. N., Peresecheniya krivykh gaussovskimi protsessami, Izd-vo LGU, L., 1981 | Zbl

[3] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Izd. 5-e, Nauka, M., 1971

[4] Beitmen G., Erdeii A., Tablitsy integralnykh preobrazovanii, T. 1, Nauka, M., 1969; Т. 2, Наука, М., 1970

[5] Miroshin R. N., “Asimptoticheskaya otsenka integrala ot proizvedeniya dvukh modifitsirovannykh besselevykh funktsii i stepennoi funktsii”, Matem. zametki, 61:3 (1997), 456–458 | MR | Zbl

[6] Longuet-Higgins M. S., “The distribution of intervals between zeros of a stationary random function”, Phil. Trans. Roy. Soc. London Ser. A, 254 (1962), 557–599 | DOI | MR | Zbl

[7] Rice S. O., “Mathematical analysis of random noise”, Bell System Techn. J., 23 (1944), 282–332 | MR | Zbl

[8] Belyaev Yu. K., “O chisle peresechenii urovnya gaussovskim sluchainym protsessom”, Teor. veroyatn. i ee prim., 11:1 (1966), 120–128 ; 12:3 (1967), 444–457 | MR | Zbl | MR | Zbl

[9] Miroshin R. N., “Markovskie i vozvratnye statsionarnye gaussovskie protsessy vtorogo poryadka”, Teor. veroyatn. i ee prim., 24:4 (1979), 847–853 | MR | Zbl

[10] Miroshin R. N., “Ob asimptotike dispersii chisla nulei gaussovskogo statsionarnogo protsessa”, Vestn. S.-Peterb. un-ta. Ser. 1, 1:1 (1999), 22–28 | MR | Zbl

[11] Bernshtein S. N., “O zavisimostyakh mezhdu sluchainymi velichinami”, Sobr. soch., T. 4, Nauka, M., 1964, 235–254

[12] Geodakov N. A., “Lokalno markovskoe svoistvo gaussovskikh statsionarnykh protsessov”, Teor. veroyatn. i ee prim., 24:4 (1979), 854–858 | MR | Zbl