Convergence of Greedy Algorithms in Banach Spaces
Matematičeskie zametki, Tome 73 (2003) no. 3, pp. 371-389.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the convergence of greedy algorithms in Banach spaces. We construct an example of a smooth Banach space, where the $X$-greedy algorithm converges not for all dictionaries and initial vectors. We also study the $R$-greedy algorithm, which, along with the $X$-greedy algorithm, is a generalization of the simple greedy algorithm in Hilbert space. We prove its convergence for a certain class of Banach spaces. In particular, this class contains, the spaces $\ell^p$, $p\ge2$.
@article{MZM_2003_73_3_a4,
     author = {E. D. Livshits},
     title = {Convergence of {Greedy} {Algorithms} in {Banach} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {371--389},
     publisher = {mathdoc},
     volume = {73},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a4/}
}
TY  - JOUR
AU  - E. D. Livshits
TI  - Convergence of Greedy Algorithms in Banach Spaces
JO  - Matematičeskie zametki
PY  - 2003
SP  - 371
EP  - 389
VL  - 73
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a4/
LA  - ru
ID  - MZM_2003_73_3_a4
ER  - 
%0 Journal Article
%A E. D. Livshits
%T Convergence of Greedy Algorithms in Banach Spaces
%J Matematičeskie zametki
%D 2003
%P 371-389
%V 73
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a4/
%G ru
%F MZM_2003_73_3_a4
E. D. Livshits. Convergence of Greedy Algorithms in Banach Spaces. Matematičeskie zametki, Tome 73 (2003) no. 3, pp. 371-389. http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a4/

[1] DeVore R. A., Temlyakov V. N., “Some remarks on Greedy algorithms”, Adv. Comput. Math., 5 (1996), 173–187 | DOI | MR | Zbl

[2] Temlyakov V. N., Nonlinear Methods of Approximation, IMI Preprint Series. No 9, 2001, p. 1–57; http://www.math.sc.edu/ĩmip

[3] Jones L. K., “On a conjecture of Huber concerning the projection persuit regression”, Ann. Statist., 15 (1987), 880–882 | DOI | MR | Zbl

[4] Donahue M., Gurvits L., Darken C., Sontaq E., “Rate of convex approximation in non-Hilbert spaces”, Constr. Approx., 13 (1997), 187–220 | DOI | MR | Zbl

[5] Dubinin V. V., Greedy Algorithms and Applications, Ph. D. Thesis, Univ. South Carolina, 1997

[6] Temlyakov V. N., “Greedy algorithms in Banach spaces”, Adv. Comput. Math., 14 (2001), 277–292 | DOI | MR | Zbl

[7] Dilworth S. J., Kutzarova D., Temlyakov V. N., Convergence of Some Greedy Algorithms in Banach Spaces, IMI Preprint Series. No 14, 2001, p. 1–21; http://www.math.sc.edu/ĩmip | MR

[8] Distel Dzh., Geometriya banakhovykh prostranstv. Izbrannye glavy, Vischa shkola, Kiev, 1980