The Subspace of $C[0,1]$ Consisting of Functions Having Finite One-Sided Derivatives Nowhere
Matematičeskie zametki, Tome 73 (2003) no. 3, pp. 348-354.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a closed infinite-dimensional subspace $G\subset C[0,1]$giving an affirmative answer to the old question: Does there exist an infinite-dimensional closed subspace $G\subset C[0,1]$ such that each (not identically zero) function $y\in G$ has neither a right-hand nor a left-hand finite derivative at any point.
@article{MZM_2003_73_3_a2,
     author = {E. I. Berezhnoi},
     title = {The {Subspace} of $C[0,1]$ {Consisting} of {Functions} {Having} {Finite} {One-Sided} {Derivatives} {Nowhere}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {348--354},
     publisher = {mathdoc},
     volume = {73},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a2/}
}
TY  - JOUR
AU  - E. I. Berezhnoi
TI  - The Subspace of $C[0,1]$ Consisting of Functions Having Finite One-Sided Derivatives Nowhere
JO  - Matematičeskie zametki
PY  - 2003
SP  - 348
EP  - 354
VL  - 73
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a2/
LA  - ru
ID  - MZM_2003_73_3_a2
ER  - 
%0 Journal Article
%A E. I. Berezhnoi
%T The Subspace of $C[0,1]$ Consisting of Functions Having Finite One-Sided Derivatives Nowhere
%J Matematičeskie zametki
%D 2003
%P 348-354
%V 73
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a2/
%G ru
%F MZM_2003_73_3_a2
E. I. Berezhnoi. The Subspace of $C[0,1]$ Consisting of Functions Having Finite One-Sided Derivatives Nowhere. Matematičeskie zametki, Tome 73 (2003) no. 3, pp. 348-354. http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a2/

[1] Fonf V. P., Gurariy V. I., Kadets M. I., “An infinite-dimensional subspace $C[0,1]$ consisting of nowhere differentiable functions”, C. R. Acad. Bulg. Sci., 52:11–12 (1999), 13–16 | MR | Zbl

[2] Zigmund A., Trigonometricheskie ryady, T. 1, Mir, M., 1965

[3] Petrushev P. P., Troyanski S. L., “O teoreme Banakha–Mazura ob universalnosti $C[0,1]$”, Comp. rend. Acad. Bulg. Sci., 37:3 (1984), 283–285 | Zbl

[4] Gurarii V. I., “Lineinoe prostranstvo sostoyaschee iz vsyudu nedifferentsiruemykh funktsii”, Comp. rend. Acad. Bulg. Sci., 44:5 (1991), 13–15

[5] Rodriguez-Piazza I., “Every separable Banach space is isometric to a space of continuous nowhere differentiable functions”, Proc. Amer. Math. Soc., 123:12 (1995), 3650–3654 | DOI | MR