The Subspace of $C[0,1]$ Consisting of Functions Having Finite One-Sided Derivatives Nowhere
Matematičeskie zametki, Tome 73 (2003) no. 3, pp. 348-354
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct a closed infinite-dimensional subspace $G\subset C[0,1]$giving an affirmative answer to the old question: Does there exist an infinite-dimensional closed subspace $G\subset C[0,1]$ such that each (not identically zero) function $y\in G$ has neither a right-hand nor a left-hand finite derivative at any point.
@article{MZM_2003_73_3_a2,
author = {E. I. Berezhnoi},
title = {The {Subspace} of $C[0,1]$ {Consisting} of {Functions} {Having} {Finite} {One-Sided} {Derivatives} {Nowhere}},
journal = {Matemati\v{c}eskie zametki},
pages = {348--354},
publisher = {mathdoc},
volume = {73},
number = {3},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a2/}
}
TY - JOUR AU - E. I. Berezhnoi TI - The Subspace of $C[0,1]$ Consisting of Functions Having Finite One-Sided Derivatives Nowhere JO - Matematičeskie zametki PY - 2003 SP - 348 EP - 354 VL - 73 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a2/ LA - ru ID - MZM_2003_73_3_a2 ER -
E. I. Berezhnoi. The Subspace of $C[0,1]$ Consisting of Functions Having Finite One-Sided Derivatives Nowhere. Matematičeskie zametki, Tome 73 (2003) no. 3, pp. 348-354. http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a2/