Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2003_73_3_a2, author = {E. I. Berezhnoi}, title = {The {Subspace} of $C[0,1]$ {Consisting} of {Functions} {Having} {Finite} {One-Sided} {Derivatives} {Nowhere}}, journal = {Matemati\v{c}eskie zametki}, pages = {348--354}, publisher = {mathdoc}, volume = {73}, number = {3}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a2/} }
TY - JOUR AU - E. I. Berezhnoi TI - The Subspace of $C[0,1]$ Consisting of Functions Having Finite One-Sided Derivatives Nowhere JO - Matematičeskie zametki PY - 2003 SP - 348 EP - 354 VL - 73 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a2/ LA - ru ID - MZM_2003_73_3_a2 ER -
E. I. Berezhnoi. The Subspace of $C[0,1]$ Consisting of Functions Having Finite One-Sided Derivatives Nowhere. Matematičeskie zametki, Tome 73 (2003) no. 3, pp. 348-354. http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a2/
[1] Fonf V. P., Gurariy V. I., Kadets M. I., “An infinite-dimensional subspace $C[0,1]$ consisting of nowhere differentiable functions”, C. R. Acad. Bulg. Sci., 52:11–12 (1999), 13–16 | MR | Zbl
[2] Zigmund A., Trigonometricheskie ryady, T. 1, Mir, M., 1965
[3] Petrushev P. P., Troyanski S. L., “O teoreme Banakha–Mazura ob universalnosti $C[0,1]$”, Comp. rend. Acad. Bulg. Sci., 37:3 (1984), 283–285 | Zbl
[4] Gurarii V. I., “Lineinoe prostranstvo sostoyaschee iz vsyudu nedifferentsiruemykh funktsii”, Comp. rend. Acad. Bulg. Sci., 44:5 (1991), 13–15
[5] Rodriguez-Piazza I., “Every separable Banach space is isometric to a space of continuous nowhere differentiable functions”, Proc. Amer. Math. Soc., 123:12 (1995), 3650–3654 | DOI | MR