Spectral Analysis of Powers of the Operator $(Vf)(x)=q(x)\int_0^xw(t)f(t)dt$
Matematičeskie zametki, Tome 73 (2003) no. 3, pp. 444-449.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_2003_73_3_a10,
     author = {I. Yu. Domanov},
     title = {Spectral {Analysis} of {Powers} of the {Operator} $(Vf)(x)=q(x)\int_0^xw(t)f(t)dt$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {444--449},
     publisher = {mathdoc},
     volume = {73},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a10/}
}
TY  - JOUR
AU  - I. Yu. Domanov
TI  - Spectral Analysis of Powers of the Operator $(Vf)(x)=q(x)\int_0^xw(t)f(t)dt$
JO  - Matematičeskie zametki
PY  - 2003
SP  - 444
EP  - 449
VL  - 73
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a10/
LA  - ru
ID  - MZM_2003_73_3_a10
ER  - 
%0 Journal Article
%A I. Yu. Domanov
%T Spectral Analysis of Powers of the Operator $(Vf)(x)=q(x)\int_0^xw(t)f(t)dt$
%J Matematičeskie zametki
%D 2003
%P 444-449
%V 73
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a10/
%G ru
%F MZM_2003_73_3_a10
I. Yu. Domanov. Spectral Analysis of Powers of the Operator $(Vf)(x)=q(x)\int_0^xw(t)f(t)dt$. Matematičeskie zametki, Tome 73 (2003) no. 3, pp. 444-449. http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a10/

[1] Gokhberg I. Ts., Krein M. G., Teoriya volterrovykh operatorov v gilbertovom prostranstve i ee prilozheniya, Nauka, M., 1967

[2] Nikolskii N. K., Lektsii ob operatore sdviga, Nauka, M., 1980

[3] Brodskii M. S., Treugolnye i zhordanovy predstavleniya lineinykh operatorov, Nauka, M., 1969

[4] Malamud M. M., Dokl. RAN, 351:4 (1996), 143–146 | MR

[5] Malamud M. M., Oper. Theory Adv. Appl., 102 (1998), 143–167 | MR | Zbl

[6] Joo Ho Kang, Kyungpook Math. J., 30 (1990), 1–6 | MR

[7] Sekefalvi-Nad B., Foyash Ch., Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970

[8] Malamud M. M., Trans. Moscow Math. Soc., 55 (1995), 57–122

[9] Berezin F. A., Shubin M. A., Uravnenie Shredingera, Izd-vo Mosk. un-ta, M., 1983

[10] Gubreev G. M., Matem. sb., 183:9 (1992), 105–146 | Zbl