Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2003_73_3_a10, author = {I. Yu. Domanov}, title = {Spectral {Analysis} of {Powers} of the {Operator} $(Vf)(x)=q(x)\int_0^xw(t)f(t)dt$}, journal = {Matemati\v{c}eskie zametki}, pages = {444--449}, publisher = {mathdoc}, volume = {73}, number = {3}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a10/} }
I. Yu. Domanov. Spectral Analysis of Powers of the Operator $(Vf)(x)=q(x)\int_0^xw(t)f(t)dt$. Matematičeskie zametki, Tome 73 (2003) no. 3, pp. 444-449. http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a10/
[1] Gokhberg I. Ts., Krein M. G., Teoriya volterrovykh operatorov v gilbertovom prostranstve i ee prilozheniya, Nauka, M., 1967
[2] Nikolskii N. K., Lektsii ob operatore sdviga, Nauka, M., 1980
[3] Brodskii M. S., Treugolnye i zhordanovy predstavleniya lineinykh operatorov, Nauka, M., 1969
[4] Malamud M. M., Dokl. RAN, 351:4 (1996), 143–146 | MR
[5] Malamud M. M., Oper. Theory Adv. Appl., 102 (1998), 143–167 | MR | Zbl
[6] Joo Ho Kang, Kyungpook Math. J., 30 (1990), 1–6 | MR
[7] Sekefalvi-Nad B., Foyash Ch., Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970
[8] Malamud M. M., Trans. Moscow Math. Soc., 55 (1995), 57–122
[9] Berezin F. A., Shubin M. A., Uravnenie Shredingera, Izd-vo Mosk. un-ta, M., 1983
[10] Gubreev G. M., Matem. sb., 183:9 (1992), 105–146 | Zbl