The Hardy--Littlewood Theorem for Fourier--Haar Series
Matematičeskie zametki, Tome 73 (2003) no. 3, pp. 340-347.

Voir la notice de l'article provenant de la source Math-Net.Ru

An interpolation theorem for a class of net spaces is proved. In terms of Fourier–Haar coefficients, we obtain a test for a function to belong to the net space $N_p^q (M)$, where 1 and M is the set of all closed intervals in $[0,1]$. As a corollary, we derive an analog of the Hardy–Littlewood theorem for Fourier–Haar series.
@article{MZM_2003_73_3_a1,
     author = {E. D. Nursultanov and T. U. Aubakirov},
     title = {The {Hardy--Littlewood} {Theorem} for {Fourier--Haar} {Series}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {340--347},
     publisher = {mathdoc},
     volume = {73},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a1/}
}
TY  - JOUR
AU  - E. D. Nursultanov
AU  - T. U. Aubakirov
TI  - The Hardy--Littlewood Theorem for Fourier--Haar Series
JO  - Matematičeskie zametki
PY  - 2003
SP  - 340
EP  - 347
VL  - 73
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a1/
LA  - ru
ID  - MZM_2003_73_3_a1
ER  - 
%0 Journal Article
%A E. D. Nursultanov
%A T. U. Aubakirov
%T The Hardy--Littlewood Theorem for Fourier--Haar Series
%J Matematičeskie zametki
%D 2003
%P 340-347
%V 73
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a1/
%G ru
%F MZM_2003_73_3_a1
E. D. Nursultanov; T. U. Aubakirov. The Hardy--Littlewood Theorem for Fourier--Haar Series. Matematičeskie zametki, Tome 73 (2003) no. 3, pp. 340-347. http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a1/

[1] Zigmund A., Trigonometricheskie ryady, T. II, Mir, M., 1965

[2] Boas R. P., Jr., Integrability Theorems and Transforms, Ergebnisse der Mathematik und ihrer Grenzgebiete, 38, Springer-Verlag, New York, 1966

[3] Ulyanov P. L., “O ryadakh po sisteme Khaara”, Matem. sb., 63 (105):3 (1964), 356–391 | MR | Zbl

[4] Berg I., Lefstrem I., Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980, 264 pp.

[5] Nursultanov E. D., “Interpolation properties of some anisotropic spaces and Hardy–Littlewood type inequalities”, East J. Approx., 1998, no. 2, 243–275 | MR

[6] Tribel Kh., Teoriya interpolyatsii. Funktsionalnye prostranstva. Differentsiruemye operatory, Mir, M., 1988

[7] Maslov A. V., “O koeffitsientakh Fure po sisteme Khaara funktsii iz prostranstv $L_p$”, Matem. sb., 126 (168):4 (1985), 490–514 | MR | Zbl