The Hardy--Littlewood Theorem for Fourier--Haar Series
Matematičeskie zametki, Tome 73 (2003) no. 3, pp. 340-347
Voir la notice de l'article provenant de la source Math-Net.Ru
An interpolation theorem for a class of net spaces is proved. In terms of Fourier–Haar coefficients, we obtain a test for a function to belong to the net space $N_p^q (M)$, where 1 and M is the set of all closed intervals in $[0,1]$. As a corollary, we derive an analog of the Hardy–Littlewood theorem for Fourier–Haar series.
@article{MZM_2003_73_3_a1,
author = {E. D. Nursultanov and T. U. Aubakirov},
title = {The {Hardy--Littlewood} {Theorem} for {Fourier--Haar} {Series}},
journal = {Matemati\v{c}eskie zametki},
pages = {340--347},
publisher = {mathdoc},
volume = {73},
number = {3},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a1/}
}
E. D. Nursultanov; T. U. Aubakirov. The Hardy--Littlewood Theorem for Fourier--Haar Series. Matematičeskie zametki, Tome 73 (2003) no. 3, pp. 340-347. http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a1/