Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2003_73_3_a1, author = {E. D. Nursultanov and T. U. Aubakirov}, title = {The {Hardy--Littlewood} {Theorem} for {Fourier--Haar} {Series}}, journal = {Matemati\v{c}eskie zametki}, pages = {340--347}, publisher = {mathdoc}, volume = {73}, number = {3}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a1/} }
E. D. Nursultanov; T. U. Aubakirov. The Hardy--Littlewood Theorem for Fourier--Haar Series. Matematičeskie zametki, Tome 73 (2003) no. 3, pp. 340-347. http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a1/
[1] Zigmund A., Trigonometricheskie ryady, T. II, Mir, M., 1965
[2] Boas R. P., Jr., Integrability Theorems and Transforms, Ergebnisse der Mathematik und ihrer Grenzgebiete, 38, Springer-Verlag, New York, 1966
[3] Ulyanov P. L., “O ryadakh po sisteme Khaara”, Matem. sb., 63 (105):3 (1964), 356–391 | MR | Zbl
[4] Berg I., Lefstrem I., Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980, 264 pp.
[5] Nursultanov E. D., “Interpolation properties of some anisotropic spaces and Hardy–Littlewood type inequalities”, East J. Approx., 1998, no. 2, 243–275 | MR
[6] Tribel Kh., Teoriya interpolyatsii. Funktsionalnye prostranstva. Differentsiruemye operatory, Mir, M., 1988
[7] Maslov A. V., “O koeffitsientakh Fure po sisteme Khaara funktsii iz prostranstv $L_p$”, Matem. sb., 126 (168):4 (1985), 490–514 | MR | Zbl