Maxima of Subexponential Shot-Noise Fields with Finite Radius of Influence
Matematičeskie zametki, Tome 73 (2003) no. 2, pp. 258-262.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the asymptotic behavior of the maxima of shot-noise fields on bounded measurable domains tending to infinity in the sense of van Hove. It is assumed that the radius of influence is finite and the amplitudes are subexponentially distributed. A nondegenerate limiting distribution for the maxima is obtained.
@article{MZM_2003_73_2_a9,
     author = {A. V. Lebedev},
     title = {Maxima of {Subexponential} {Shot-Noise} {Fields} with {Finite} {Radius} of {Influence}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {258--262},
     publisher = {mathdoc},
     volume = {73},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_2_a9/}
}
TY  - JOUR
AU  - A. V. Lebedev
TI  - Maxima of Subexponential Shot-Noise Fields with Finite Radius of Influence
JO  - Matematičeskie zametki
PY  - 2003
SP  - 258
EP  - 262
VL  - 73
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_2_a9/
LA  - ru
ID  - MZM_2003_73_2_a9
ER  - 
%0 Journal Article
%A A. V. Lebedev
%T Maxima of Subexponential Shot-Noise Fields with Finite Radius of Influence
%J Matematičeskie zametki
%D 2003
%P 258-262
%V 73
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_2_a9/
%G ru
%F MZM_2003_73_2_a9
A. V. Lebedev. Maxima of Subexponential Shot-Noise Fields with Finite Radius of Influence. Matematičeskie zametki, Tome 73 (2003) no. 2, pp. 258-262. http://geodesic.mathdoc.fr/item/MZM_2003_73_2_a9/

[1] Chandrasekar S., Stokhasticheskie problemy v fizike i astronomii, GIIL, M., 1947

[2] Daley D. J., “The definition of multi-dimensional generalization of shot noise”, J. Appl. Probab., 8:1 (1971), 128–135 | DOI | MR | Zbl

[3] Westcott M., “On the existence of a generalized shot-noise process”, Stud. Probab. Stat., 1976, 74–88

[4] Bulinskii A. V., “Tsentralnaya predelnaya teorema dlya polei drobovogo shuma”, Problemy teorii veroyatn. raspredelenii. XI, Zapiski nauchnykh seminarov LOMI, 177, Nauka, L., 1989, 28–36

[5] Gubner J. A., “Computation of shot-noise probability distributions and densities”, SIAM J. Sci. Comp., 17:3 (1996), 750–761 | DOI | MR | Zbl

[6] van Lieshout M. N. M., Molchanov I. S., “Shot-noise-weighted processes: a new family of spatial point processes”, Comm. Stat. Stochastic Models, 14:3 (1998), 715–734 | DOI | MR | Zbl

[7] Bakhtin Yu. Yu., “Zakon povtornogo logarifma dlya resheniya uravneniya Byurgersa so sluchainymi nachalnymi dannymi”, Matem. zametki, 64:6 (1998), 812–823 | MR | Zbl

[8] Lebedev A. V., “Ekstremumy subeksponentsialnogo drobovogo shuma”, Matem. zametki, 71:2 (2002), 227–231 | MR | Zbl

[9] Ryuel D., Statisticheskaya mekhanika, Mir, M., 1971

[10] Chistyakov V. P., “Teorema o summakh polozhitelnykh sluchainykh velichin i ee prilozheniya k vetvyaschimsya sluchainym protsessam”, Teoriya veroyatnosti i ee primen., 9:4 (1964), 710–718 | MR | Zbl

[11] Yakymiv A. L., “Yavnye otsenki dlya asimptotiki subeksponentsialnykh bezgranichno delimykh funktsii raspredeleniya”, Matem. zametki, 67:2 (2000), 295–301 | MR | Zbl

[12] Baltrunas A., “O subeksponentsialnosti odnogo klassa sluchainykh velichin”, Matem. zametki, 69:4 (2001), 625–628 | MR | Zbl

[13] Embrechts P., Goldie C. M., Veraverbeke N., “Subexponentiality and infinite divisibility”, Z. Wahr. verw. Geb., 49:3 (1979), 335–347 | DOI | MR | Zbl