The Maximum Principle for Parabolic Inequalities on Stratified Sets
Matematičeskie zametki, Tome 73 (2003) no. 2, pp. 244-257.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the heat conduction operator with elliptic part of divergent type on a stratified set (i.e., on the set of manifolds of various dimension). We prove an analog of the lemma on the normal derivative and the weak and strong maximum principles for parabolic inequalities on this set.
@article{MZM_2003_73_2_a8,
     author = {V. V. Kulyaba and O. M. Penkin},
     title = {The {Maximum} {Principle} for {Parabolic} {Inequalities} on {Stratified} {Sets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {244--257},
     publisher = {mathdoc},
     volume = {73},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_2_a8/}
}
TY  - JOUR
AU  - V. V. Kulyaba
AU  - O. M. Penkin
TI  - The Maximum Principle for Parabolic Inequalities on Stratified Sets
JO  - Matematičeskie zametki
PY  - 2003
SP  - 244
EP  - 257
VL  - 73
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_2_a8/
LA  - ru
ID  - MZM_2003_73_2_a8
ER  - 
%0 Journal Article
%A V. V. Kulyaba
%A O. M. Penkin
%T The Maximum Principle for Parabolic Inequalities on Stratified Sets
%J Matematičeskie zametki
%D 2003
%P 244-257
%V 73
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_2_a8/
%G ru
%F MZM_2003_73_2_a8
V. V. Kulyaba; O. M. Penkin. The Maximum Principle for Parabolic Inequalities on Stratified Sets. Matematičeskie zametki, Tome 73 (2003) no. 2, pp. 244-257. http://geodesic.mathdoc.fr/item/MZM_2003_73_2_a8/

[1] Kulyaba V. V., “Zadacha teploprovodnosti, privodyaschaya k parabolicheskomu operatoru na stratifitsirovannom mnozhestve”, Sb. trudov molodykh uchenykh matem. fakulteta Voronezhskogo gos. un-ta, Voronezh, 2001, 109–112

[2] Lumer G., “Espaces ramifiés et diffusions sur les réseaux topologiques”, C. R. Acad. Sc. Paris. Sér. A, 291 (1980), 627–630 | MR | Zbl

[3] Lumer G., “Connecting of local operators and evolution equations on networks”, Lecture Notes in Math., 787, Springer-Verlag, New York, 1980, 219–234 | MR

[4] Pokornyi Yu. V., “O kraevykh zadachakh na grafakh”, Chislennye metody i optimizatsiya, Materialy IV simpoziuma AN ESSR, Tallin, 1988, 158–161

[5] Nicaise S., “Spectre des reseaux topologiques finis”, Bull. Sc. Math. Ser. 2, 111 (1987), 401–413 | MR | Zbl

[6] Nicaise S., “Le laplacien sur les réseaux deux-dimensionnels polygonaux topologiques”, J. Math. Pures Appl., 67 (1988), 93–113 | MR | Zbl

[7] Gavrilov A., Nicaise S., Penkin O., Poincaré's inequality on stratified sets and applications, Rapport de recherche No 01.2 (Février 2001), Université de Valenciennes, 2001 | Zbl

[8] Zhikov V. V., “Svyaznost i usrednenie. Primery fraktalnoi provodimosti”, Matem. sb., 187:8 (1996), 3–40 | MR | Zbl

[9] Zhikov V. V., “Ob odnom rasshirenii i primenenii metoda dvukhmasshtabnoi skhodimosti”, Matem. sb., 191:7 (2000), 31–72 | MR | Zbl

[10] Penkin O. M., Pokornyi Yu. V., “O nesovmestnykh neravenstvakh dlya ellipticheskikh operatorov na stratifitsirovannykh mnozhestvakh”, Differents. uravneniya, 34:8 (1998), 1107–1113 | MR

[11] Gilbarg D., Trudinger M. N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | Zbl

[12] Penkin O., “About a geometrical approach to multistructures and some qualitative properties of solutions”, Partial Differential Equations on Multistructures, eds. F. Ali Mehmeti, J. von Belov, S. Nicaise, Dekker, Marcel, 2001, 183–191 | MR | Zbl

[13] Gavrilov A. A., Penkin O. M., “Analog lemmy o normalnoi proizvodnoi dlya ellipticheskogo uravneniya na stratifitsirovannom mnozhestve”, Differents. uravneniya, 36:2 (2000), 226–232 | MR | Zbl

[14] Rubinstein I., Rubinstein L., Partial Differential Equations in Classical Mathematical Physics, Cambridge Univ. Press, Cambridge, 1998 | Zbl