The Maximum Principle for Parabolic Inequalities on Stratified Sets
Matematičeskie zametki, Tome 73 (2003) no. 2, pp. 244-257

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the heat conduction operator with elliptic part of divergent type on a stratified set (i.e., on the set of manifolds of various dimension). We prove an analog of the lemma on the normal derivative and the weak and strong maximum principles for parabolic inequalities on this set.
@article{MZM_2003_73_2_a8,
     author = {V. V. Kulyaba and O. M. Penkin},
     title = {The {Maximum} {Principle} for {Parabolic} {Inequalities} on {Stratified} {Sets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {244--257},
     publisher = {mathdoc},
     volume = {73},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_2_a8/}
}
TY  - JOUR
AU  - V. V. Kulyaba
AU  - O. M. Penkin
TI  - The Maximum Principle for Parabolic Inequalities on Stratified Sets
JO  - Matematičeskie zametki
PY  - 2003
SP  - 244
EP  - 257
VL  - 73
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_2_a8/
LA  - ru
ID  - MZM_2003_73_2_a8
ER  - 
%0 Journal Article
%A V. V. Kulyaba
%A O. M. Penkin
%T The Maximum Principle for Parabolic Inequalities on Stratified Sets
%J Matematičeskie zametki
%D 2003
%P 244-257
%V 73
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_2_a8/
%G ru
%F MZM_2003_73_2_a8
V. V. Kulyaba; O. M. Penkin. The Maximum Principle for Parabolic Inequalities on Stratified Sets. Matematičeskie zametki, Tome 73 (2003) no. 2, pp. 244-257. http://geodesic.mathdoc.fr/item/MZM_2003_73_2_a8/