Homology of Nilpotent Subalgebras of the Lie Superalgebra $K(1,1)$. 3
Matematičeskie zametki, Tome 73 (2003) no. 2, pp. 234-243

Voir la notice de l'article provenant de la source Math-Net.Ru

We calculate the dimensions of the second homology groups with trivial coefficients of nilpotent subalgebras of the Lie superalgebra $K(1,1)$, which is the natural superanalog of the Witt algebra. The proof is based on direct calculations of the rank of the differential. As an application, we find deformations of the maximal nilpotent subalgebra in $K(1,1)$.
@article{MZM_2003_73_2_a7,
     author = {Yu. Yu. Kochetkov},
     title = {Homology of {Nilpotent} {Subalgebras} of the {Lie} {Superalgebra} $K(1,1)$. 3},
     journal = {Matemati\v{c}eskie zametki},
     pages = {234--243},
     publisher = {mathdoc},
     volume = {73},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_2_a7/}
}
TY  - JOUR
AU  - Yu. Yu. Kochetkov
TI  - Homology of Nilpotent Subalgebras of the Lie Superalgebra $K(1,1)$. 3
JO  - Matematičeskie zametki
PY  - 2003
SP  - 234
EP  - 243
VL  - 73
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_2_a7/
LA  - ru
ID  - MZM_2003_73_2_a7
ER  - 
%0 Journal Article
%A Yu. Yu. Kochetkov
%T Homology of Nilpotent Subalgebras of the Lie Superalgebra $K(1,1)$. 3
%J Matematičeskie zametki
%D 2003
%P 234-243
%V 73
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_2_a7/
%G ru
%F MZM_2003_73_2_a7
Yu. Yu. Kochetkov. Homology of Nilpotent Subalgebras of the Lie Superalgebra $K(1,1)$. 3. Matematičeskie zametki, Tome 73 (2003) no. 2, pp. 234-243. http://geodesic.mathdoc.fr/item/MZM_2003_73_2_a7/