On the Brouwer Dimension of Compact Spaces
Matematičeskie zametki, Tome 73 (2003) no. 2, pp. 295-304.

Voir la notice de l'article provenant de la source Math-Net.Ru

A closed set is called a cut between two disjoint sets if any continuum intersecting both these sets intersects the cut. The main result of this paper is that, for any compact space, the dimension defined by induction on the basis of the notion of cut does not exceed the covering dimension.
@article{MZM_2003_73_2_a13,
     author = {V. V. Fedorchuk},
     title = {On the {Brouwer} {Dimension} of {Compact} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {295--304},
     publisher = {mathdoc},
     volume = {73},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_2_a13/}
}
TY  - JOUR
AU  - V. V. Fedorchuk
TI  - On the Brouwer Dimension of Compact Spaces
JO  - Matematičeskie zametki
PY  - 2003
SP  - 295
EP  - 304
VL  - 73
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_2_a13/
LA  - ru
ID  - MZM_2003_73_2_a13
ER  - 
%0 Journal Article
%A V. V. Fedorchuk
%T On the Brouwer Dimension of Compact Spaces
%J Matematičeskie zametki
%D 2003
%P 295-304
%V 73
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_2_a13/
%G ru
%F MZM_2003_73_2_a13
V. V. Fedorchuk. On the Brouwer Dimension of Compact Spaces. Matematičeskie zametki, Tome 73 (2003) no. 2, pp. 295-304. http://geodesic.mathdoc.fr/item/MZM_2003_73_2_a13/

[1] Brouwer L. E. J., “Über den natürlichen Dimensionsbegriff”, J. Reine Angew. Math., 142 (1913), 146–152

[2] Brouwer L. E. J., “Über den natürlichen Dimensionbegriff”, J. Reine Angew. Math., 142 (1913), 146–152; Berichtung, J. Reine Angew. Math., 153 (1924), 253

[3] Gurevich V., Volmen G., Teoriya razmernosti, IL, M., 1948

[4] Fedorchuk V. V., van Mill J., “Dimensiongrad for locally connected Polish spaces”, Fund. Math., 163:1 (2000), 77–82 | MR | Zbl

[5] Fedorchuk V. V., Levin M., Schepin E. V., “O brauerovskom opredelenii razmernosti”, UMN, 54:2 (1999), 193–194 | MR | Zbl

[6] Aleksandrov P. S., Pasynkov B. A., Vvedenie v teoriyu razmernosti, Nauka, M., 1973

[7] Schepin E. V., “Funktory i neschetnye stepeni kompaktov”, UMN, 36:3 (1981), 3–62 | MR | Zbl

[8] Mardesic S., “On covering dimension and inverse limits of compact spaces”, Illinois J. Math., 4:2 (1960), 278–291 | MR | Zbl

[9] Fedorchuk V. V., “Bikompakty bez promezhutochnykh razmernostei”, Dokl. AN SSSR, 213:4 (1973), 795–797 | MR | Zbl