Commutative Moufang Loops with Finite Conjugacy Classes of Subloops
Matematičeskie zametki, Tome 73 (2003) no. 2, pp. 269-280
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that the following conditions are equivalent for an arbitrary commutative Moufang loop $Q$:
1) the loop $Q$ is finite over the center;
2) every subloop of $Q$ defines a finite conjugacy class of subloops;
3) every associative subloop of $Q$ defines a finite conjugacy class of subloops;
4) every infinite associative subloop of $Q$ defines a finite conjugacy class of subloops.
@article{MZM_2003_73_2_a11,
author = {N. I. Sandu},
title = {Commutative {Moufang} {Loops} with {Finite} {Conjugacy} {Classes} of {Subloops}},
journal = {Matemati\v{c}eskie zametki},
pages = {269--280},
publisher = {mathdoc},
volume = {73},
number = {2},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_2_a11/}
}
N. I. Sandu. Commutative Moufang Loops with Finite Conjugacy Classes of Subloops. Matematičeskie zametki, Tome 73 (2003) no. 2, pp. 269-280. http://geodesic.mathdoc.fr/item/MZM_2003_73_2_a11/