Boundary Interpolation Problem in the Classes of Generalized Nevanlinna Matrix Functions
Matematičeskie zametki, Tome 73 (2003) no. 2, pp. 173-178.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the boundary indefinite interpolation problem in the classes of generalized Nevanlinna matrix functions. A one-to-one correspondence between the set of all solutions of the problem and the class of so-called $G$-regular self-adjoint extensions of the model symmetric operator associated with the problem is established. Sufficient conditions for the $G$-regularity of self-adjoint extensions (in terms of the Weyl function) are given. A formula for the description of all the solutions of the problem is obtained.
@article{MZM_2003_73_2_a1,
     author = {A. A. Amirshadyan},
     title = {Boundary {Interpolation} {Problem} in the {Classes} of {Generalized} {Nevanlinna} {Matrix} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {173--178},
     publisher = {mathdoc},
     volume = {73},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_2_a1/}
}
TY  - JOUR
AU  - A. A. Amirshadyan
TI  - Boundary Interpolation Problem in the Classes of Generalized Nevanlinna Matrix Functions
JO  - Matematičeskie zametki
PY  - 2003
SP  - 173
EP  - 178
VL  - 73
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_2_a1/
LA  - ru
ID  - MZM_2003_73_2_a1
ER  - 
%0 Journal Article
%A A. A. Amirshadyan
%T Boundary Interpolation Problem in the Classes of Generalized Nevanlinna Matrix Functions
%J Matematičeskie zametki
%D 2003
%P 173-178
%V 73
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_2_a1/
%G ru
%F MZM_2003_73_2_a1
A. A. Amirshadyan. Boundary Interpolation Problem in the Classes of Generalized Nevanlinna Matrix Functions. Matematičeskie zametki, Tome 73 (2003) no. 2, pp. 173-178. http://geodesic.mathdoc.fr/item/MZM_2003_73_2_a1/

[1] Sarason D., “Nevanlinna–Pick interpolation with boundary data”, Integral Equations Operator Theory, 30 (1998), 231–250 | DOI | MR | Zbl

[2] Alpay D., Dijksma A., Langer H., Classical Nevanlinna–Pick interpolation with real interpolation points, IWI-preprint 1998-3-02, Groningen University, 1998

[3] Katsnelson V. E., “Interpolyatsiya “na spektre” v klasse funktsii Stiltesa (sluchai odnogo uzla)”, Funktsion. analiz i prikladnaya matem., 1982, 33–42 | MR

[4] Nudelman A. A., “Mnogotochechnaya matrichnaya problema momentov”, Dokl. AN SSSR, 298:4 (1988), 812–815 | MR | Zbl

[5] Ball J. A., Helton J. W., “Interpolation problem of Pick–Nevanlinna and Loewner types for meromorphic matrix functions: parametrization of the set of all solutions”, Integral Equations Operator Theory, 9 (1986), 155–203 | DOI | MR | Zbl

[6] Gorbachuk M. L., Gorbachuk V. I., Granichnye zadachi dlya differentsialno-operatornykh uravnenii, Naukova dumka, Kiev, 1984 | Zbl

[7] Malamud M. M., “O formule obobschennykh rezolvent neplotno zadannogo ermitova operatora”, Ukr. matem. zh., 44:12 (1992), 1658–1688 | MR | Zbl

[8] Derkach V., Malamud M., “The extension theory of hermitian operators and the moment problem”, J. Math. Sci., 73:2 (1995), 141–242 | DOI | MR | Zbl

[9] Derkach V., “On generalized resolvents of hermitan relations in Krein spaces”, J. Math. Sci., 97:5 (1999), 4420–4460 | DOI | MR | Zbl

[10] Krein M. G., Langer G. K., “O defektnykh podprostranstvakh i obobschennykh rezolventakh ermitova operatora v prostranstve $\Pi_\kappa$”, Funktsion. analiz i ego prilozh., 5:2 (1971), 59–71 ; 3, 54–69 | MR | Zbl | Zbl

[11] Derkach V., Hassi S., Malamud M., Snoo H. S. V., Generalized resolvents of symmetric operators and admissibility, Preprint No. 252, University of Helsinki, Helsinki, 2000

[12] Krein M. G., Langer H., “Über die $Q$-Function eines $\pi$-hermiteschen Operator in Raume $\Pi_\kappa$”, Acta Sci. Math., 34 (1973), 191–230 | MR | Zbl

[13] Nagy Sz., Koranyi A., “Relations d'une problème de Nevanlinna et Pick avec la théorie des opérateurs de l'espace hilbertien”, Acta Math. Acad. Hung., 7 (1956), 295–303 | DOI | MR

[14] Amirshadyan A., Derkach V., “Interpolation in generalized Nevanlinna and Stieltjes classes”, J. Operator Theory, 42 (1999), 145–188 | MR | Zbl

[15] Krein M. G., “Osnovnye polozheniya teorii predstavleniya ermitovykh operatorov s indeksom defekta $(m,m)$”, Ukr. matem. zh., 1:2 (1949), 3–66 | MR | Zbl