A Discrete Analog of the Poisson Summation Formula
Matematičeskie zametki, Tome 73 (2003) no. 1, pp. 106-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

The first part of this paper is concerned with the proof of a discrete analog of the Poisson summation formula. In the second part, we describe an elementary proof of a functional equation for the function $\theta(t)$, based on the summation formula derived in the paper.
@article{MZM_2003_73_1_a8,
     author = {A. V. Ustinov},
     title = {A {Discrete} {Analog} of the {Poisson} {Summation} {Formula}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {106--112},
     publisher = {mathdoc},
     volume = {73},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a8/}
}
TY  - JOUR
AU  - A. V. Ustinov
TI  - A Discrete Analog of the Poisson Summation Formula
JO  - Matematičeskie zametki
PY  - 2003
SP  - 106
EP  - 112
VL  - 73
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a8/
LA  - ru
ID  - MZM_2003_73_1_a8
ER  - 
%0 Journal Article
%A A. V. Ustinov
%T A Discrete Analog of the Poisson Summation Formula
%J Matematičeskie zametki
%D 2003
%P 106-112
%V 73
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a8/
%G ru
%F MZM_2003_73_1_a8
A. V. Ustinov. A Discrete Analog of the Poisson Summation Formula. Matematičeskie zametki, Tome 73 (2003) no. 1, pp. 106-112. http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a8/

[1] Koblits N., Vvedenie v ellipticheskie krivye i modulyarnye formy, IO NFMI, Novokuznetsk, 2000

[2] Karatsuba A. A., Osnovy analiticheskoi teorii chisel, Nauka, M., 1983

[3] Arkhipov G. I., Sadovnichii V. A., Chubarikov V. N., Lektsii po matematicheskomu analizu, Vysshaya shkola, M., 1999

[4] Titchmarsh E., Vvedenie v teoriyu integralov Fure, OGIZ, M.–L., 1948