A Version of the Ruh--Vilms Theorem for Surfaces of Constant Mean Curvature in $S^3$
Matematičeskie zametki, Tome 73 (2003) no. 1, pp. 92-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a version of the Gauss map $g\ :M^2\to S^2$ for a surface $M^2$ immersed in $S^3$ and prove an analog of the Ruh–Vilms theorem which states that this map is harmonic if $M^2$ has a constant mean curvature. As a corollary, we conclude that an embedded flat torus $T^2$ with constant mean curvature is a spherical Delonay surface.
@article{MZM_2003_73_1_a7,
     author = {L. A. Masal'tsev},
     title = {A {Version} of the {Ruh--Vilms} {Theorem} for {Surfaces} of {Constant} {Mean} {Curvature} in $S^3$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {92--105},
     publisher = {mathdoc},
     volume = {73},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a7/}
}
TY  - JOUR
AU  - L. A. Masal'tsev
TI  - A Version of the Ruh--Vilms Theorem for Surfaces of Constant Mean Curvature in $S^3$
JO  - Matematičeskie zametki
PY  - 2003
SP  - 92
EP  - 105
VL  - 73
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a7/
LA  - ru
ID  - MZM_2003_73_1_a7
ER  - 
%0 Journal Article
%A L. A. Masal'tsev
%T A Version of the Ruh--Vilms Theorem for Surfaces of Constant Mean Curvature in $S^3$
%J Matematičeskie zametki
%D 2003
%P 92-105
%V 73
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a7/
%G ru
%F MZM_2003_73_1_a7
L. A. Masal'tsev. A Version of the Ruh--Vilms Theorem for Surfaces of Constant Mean Curvature in $S^3$. Matematičeskie zametki, Tome 73 (2003) no. 1, pp. 92-105. http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a7/

[1] Ruh E. A., Vilms J., “The tension field of the Gauss map”, Trans. Amer. Math. Soc., 199 (1970), 569–573 | DOI | MR

[2] Borisenko A. A., Nikolaevskii Yu. A., “Mnogoobraziya Grassmana i grassmanov obraz podmnogoobrazii”, UMN, 46 (1991), 41–83 | MR | Zbl

[3] Liu Xiabo, “Rigidity of the Gauss map in compact Lie group”, Duke Math. J., 77:2 (1995), 447–480 | DOI | MR

[4] Bishop R. L., Krittenden R. Dzh., Geometriya mnogoobrazii, Mir, M., 1967 | Zbl

[5] Urakawa H., Calculus of Variations and Harmonic Maps, Transl. Math. Monographs, 132, Amer. Math. Soc., Providence, 1993 | MR | Zbl

[6] Lawson H. B., “Complete minimal surfaces in $S^3$”, Ann. Math., 92 (1970), 335–374 | DOI | MR | Zbl

[7] Skott P., Geometrii na trekhmernykh mnogoobraziyakh, Mir, M., 1986

[8] Fujimoto H., “Modified defect relations for the Gauss map of minimal surfaces”, J. Diff. Geom., 29 (1989), 245–262 | MR | Zbl

[9] Wente H. C., Constant Mean Curvature Immersions of Enneper Type, Memoirs of Amer. Math. Soc., 478, Amer. Math. Soc., Providence, 1992

[10] Solomon B., “Harmonic maps to spheres”, J. Diff. Geom., 21:2 (1985), 151–162 | MR | Zbl