A Version of the Ruh--Vilms Theorem for Surfaces of Constant Mean Curvature in $S^3$
Matematičeskie zametki, Tome 73 (2003) no. 1, pp. 92-105

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a version of the Gauss map $g\ :M^2\to S^2$ for a surface $M^2$ immersed in $S^3$ and prove an analog of the Ruh–Vilms theorem which states that this map is harmonic if $M^2$ has a constant mean curvature. As a corollary, we conclude that an embedded flat torus $T^2$ with constant mean curvature is a spherical Delonay surface.
@article{MZM_2003_73_1_a7,
     author = {L. A. Masal'tsev},
     title = {A {Version} of the {Ruh--Vilms} {Theorem} for {Surfaces} of {Constant} {Mean} {Curvature} in $S^3$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {92--105},
     publisher = {mathdoc},
     volume = {73},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a7/}
}
TY  - JOUR
AU  - L. A. Masal'tsev
TI  - A Version of the Ruh--Vilms Theorem for Surfaces of Constant Mean Curvature in $S^3$
JO  - Matematičeskie zametki
PY  - 2003
SP  - 92
EP  - 105
VL  - 73
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a7/
LA  - ru
ID  - MZM_2003_73_1_a7
ER  - 
%0 Journal Article
%A L. A. Masal'tsev
%T A Version of the Ruh--Vilms Theorem for Surfaces of Constant Mean Curvature in $S^3$
%J Matematičeskie zametki
%D 2003
%P 92-105
%V 73
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a7/
%G ru
%F MZM_2003_73_1_a7
L. A. Masal'tsev. A Version of the Ruh--Vilms Theorem for Surfaces of Constant Mean Curvature in $S^3$. Matematičeskie zametki, Tome 73 (2003) no. 1, pp. 92-105. http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a7/