Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2003_73_1_a7, author = {L. A. Masal'tsev}, title = {A {Version} of the {Ruh--Vilms} {Theorem} for {Surfaces} of {Constant} {Mean} {Curvature} in $S^3$}, journal = {Matemati\v{c}eskie zametki}, pages = {92--105}, publisher = {mathdoc}, volume = {73}, number = {1}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a7/} }
L. A. Masal'tsev. A Version of the Ruh--Vilms Theorem for Surfaces of Constant Mean Curvature in $S^3$. Matematičeskie zametki, Tome 73 (2003) no. 1, pp. 92-105. http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a7/
[1] Ruh E. A., Vilms J., “The tension field of the Gauss map”, Trans. Amer. Math. Soc., 199 (1970), 569–573 | DOI | MR
[2] Borisenko A. A., Nikolaevskii Yu. A., “Mnogoobraziya Grassmana i grassmanov obraz podmnogoobrazii”, UMN, 46 (1991), 41–83 | MR | Zbl
[3] Liu Xiabo, “Rigidity of the Gauss map in compact Lie group”, Duke Math. J., 77:2 (1995), 447–480 | DOI | MR
[4] Bishop R. L., Krittenden R. Dzh., Geometriya mnogoobrazii, Mir, M., 1967 | Zbl
[5] Urakawa H., Calculus of Variations and Harmonic Maps, Transl. Math. Monographs, 132, Amer. Math. Soc., Providence, 1993 | MR | Zbl
[6] Lawson H. B., “Complete minimal surfaces in $S^3$”, Ann. Math., 92 (1970), 335–374 | DOI | MR | Zbl
[7] Skott P., Geometrii na trekhmernykh mnogoobraziyakh, Mir, M., 1986
[8] Fujimoto H., “Modified defect relations for the Gauss map of minimal surfaces”, J. Diff. Geom., 29 (1989), 245–262 | MR | Zbl
[9] Wente H. C., Constant Mean Curvature Immersions of Enneper Type, Memoirs of Amer. Math. Soc., 478, Amer. Math. Soc., Providence, 1992
[10] Solomon B., “Harmonic maps to spheres”, J. Diff. Geom., 21:2 (1985), 151–162 | MR | Zbl