Modulus of Continuity of Piecewise Analytic Functions
Matematičeskie zametki, Tome 73 (2003) no. 1, pp. 63-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain conditions under which the modulus of continuity of a piecewise analytic function given on a closed interval of the real axis is an analytic function in a neighborhood of zero.
@article{MZM_2003_73_1_a5,
     author = {A. A. Dovgoshey and L. L. Potemkina},
     title = {Modulus of {Continuity} of {Piecewise} {Analytic} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {63--76},
     publisher = {mathdoc},
     volume = {73},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a5/}
}
TY  - JOUR
AU  - A. A. Dovgoshey
AU  - L. L. Potemkina
TI  - Modulus of Continuity of Piecewise Analytic Functions
JO  - Matematičeskie zametki
PY  - 2003
SP  - 63
EP  - 76
VL  - 73
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a5/
LA  - ru
ID  - MZM_2003_73_1_a5
ER  - 
%0 Journal Article
%A A. A. Dovgoshey
%A L. L. Potemkina
%T Modulus of Continuity of Piecewise Analytic Functions
%J Matematičeskie zametki
%D 2003
%P 63-76
%V 73
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a5/
%G ru
%F MZM_2003_73_1_a5
A. A. Dovgoshey; L. L. Potemkina. Modulus of Continuity of Piecewise Analytic Functions. Matematičeskie zametki, Tome 73 (2003) no. 1, pp. 63-76. http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a5/

[1] Perelman M. Ya., “O module nepreryvnosti analiticheskikh funktsii”, Uchenye zapiski LGU. Ser. matem., 12:83 (1941), 62–86 | MR | Zbl

[2] Timan A. F., Teoriya priblizhenii funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960

[3] Tamrazov P. M., Gladkosti i polinomialnye priblizheniya, Naukova dumka, Kiev, 1975 | Zbl

[4] Ditzian Z., Totik V., Moduli of Smoothness, Springer Ser. Comp. Math., 9, Springer-Verlag, New York–Berlin, 1987 | MR | Zbl

[5] Sendov Bl., Popov V., The Averaged Moduli of Smoothness, J. Wiley, New York, 1989

[6] Shevchuk I. A., Priblizhenie mnogochlenami i sledy nepreryvnykh na otrezke funktsii, Naukova dumka, Kiev, 1992

[7] Timan M. F., Approksimatsiya i svoistva periodicheskikh funktsii, Dnepropetrovskii agrarnyi universitet, Dnepropetrovsk, 2000

[8] Korneichuk N. P., Splainy v teorii priblizheniya, Nauka, M., 1984

[9] Narasimkhan R., Analiz na deistvitelnykh i kompleksnykh mnogoobraziyakh, Mir, M., 1971 | Zbl

[10] Gurvits A., Kurant R., Teoriya funktsii, Nauka, M., 1968