The Multidimensional Weyl Theorem and Covering Families
Matematičeskie zametki, Tome 73 (2003) no. 1, pp. 38-48

Voir la notice de l'article provenant de la source Math-Net.Ru

The well-known theorem of Weyl about the essential self-adjointness of the Sturm–Liouville operator $Lu=-(p(x)u')'+q(x)u$ in $L_2(\mathbb R^1)$ with $D_L=C_0^\infty(\mathbb R^1)$, $p(x)>0$, and $q(x)\ge\operatorname{const}$ is generalized to second-order elliptic operators in $L_2(G)$ ($G\subseteq\mathbb R^n$). The multidimensional Weyl theorem is derived from a more general theorem; to state and prove the latter, a special covering family is constructed. The results obtained imply the known multidimensional analogs of the Weyl theorem and, unlike these analogs, apply to open proper subsets $G$ in $\mathbb R^n$ .
@article{MZM_2003_73_1_a3,
     author = {A. G. Brusentsev},
     title = {The {Multidimensional} {Weyl} {Theorem} and {Covering} {Families}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {38--48},
     publisher = {mathdoc},
     volume = {73},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a3/}
}
TY  - JOUR
AU  - A. G. Brusentsev
TI  - The Multidimensional Weyl Theorem and Covering Families
JO  - Matematičeskie zametki
PY  - 2003
SP  - 38
EP  - 48
VL  - 73
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a3/
LA  - ru
ID  - MZM_2003_73_1_a3
ER  - 
%0 Journal Article
%A A. G. Brusentsev
%T The Multidimensional Weyl Theorem and Covering Families
%J Matematičeskie zametki
%D 2003
%P 38-48
%V 73
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a3/
%G ru
%F MZM_2003_73_1_a3
A. G. Brusentsev. The Multidimensional Weyl Theorem and Covering Families. Matematičeskie zametki, Tome 73 (2003) no. 1, pp. 38-48. http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a3/