The Multidimensional Weyl Theorem and Covering Families
Matematičeskie zametki, Tome 73 (2003) no. 1, pp. 38-48
Voir la notice de l'article provenant de la source Math-Net.Ru
The well-known theorem of Weyl about the essential self-adjointness of the Sturm–Liouville operator $Lu=-(p(x)u')'+q(x)u$ in $L_2(\mathbb R^1)$ with $D_L=C_0^\infty(\mathbb R^1)$, $p(x)>0$, and $q(x)\ge\operatorname{const}$ is generalized to second-order elliptic operators in $L_2(G)$
($G\subseteq\mathbb R^n$). The multidimensional Weyl theorem is derived from a more general theorem; to state and prove the latter, a special covering family is constructed. The results obtained imply the known multidimensional analogs of the Weyl theorem and, unlike these analogs, apply to open proper subsets $G$ in $\mathbb R^n$ .
@article{MZM_2003_73_1_a3,
author = {A. G. Brusentsev},
title = {The {Multidimensional} {Weyl} {Theorem} and {Covering} {Families}},
journal = {Matemati\v{c}eskie zametki},
pages = {38--48},
publisher = {mathdoc},
volume = {73},
number = {1},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a3/}
}
A. G. Brusentsev. The Multidimensional Weyl Theorem and Covering Families. Matematičeskie zametki, Tome 73 (2003) no. 1, pp. 38-48. http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a3/