The Multidimensional Weyl Theorem and Covering Families
Matematičeskie zametki, Tome 73 (2003) no. 1, pp. 38-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

The well-known theorem of Weyl about the essential self-adjointness of the Sturm–Liouville operator $Lu=-(p(x)u')'+q(x)u$ in $L_2(\mathbb R^1)$ with $D_L=C_0^\infty(\mathbb R^1)$, $p(x)>0$, and $q(x)\ge\operatorname{const}$ is generalized to second-order elliptic operators in $L_2(G)$ ($G\subseteq\mathbb R^n$). The multidimensional Weyl theorem is derived from a more general theorem; to state and prove the latter, a special covering family is constructed. The results obtained imply the known multidimensional analogs of the Weyl theorem and, unlike these analogs, apply to open proper subsets $G$ in $\mathbb R^n$ .
@article{MZM_2003_73_1_a3,
     author = {A. G. Brusentsev},
     title = {The {Multidimensional} {Weyl} {Theorem} and {Covering} {Families}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {38--48},
     publisher = {mathdoc},
     volume = {73},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a3/}
}
TY  - JOUR
AU  - A. G. Brusentsev
TI  - The Multidimensional Weyl Theorem and Covering Families
JO  - Matematičeskie zametki
PY  - 2003
SP  - 38
EP  - 48
VL  - 73
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a3/
LA  - ru
ID  - MZM_2003_73_1_a3
ER  - 
%0 Journal Article
%A A. G. Brusentsev
%T The Multidimensional Weyl Theorem and Covering Families
%J Matematičeskie zametki
%D 2003
%P 38-48
%V 73
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a3/
%G ru
%F MZM_2003_73_1_a3
A. G. Brusentsev. The Multidimensional Weyl Theorem and Covering Families. Matematičeskie zametki, Tome 73 (2003) no. 1, pp. 38-48. http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a3/

[1] Weyl H., “Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen”, Math. Ann., 68 (1910), 222–269 | DOI | MR

[2] Uraltseva N. N., “O nesamosopryazhennosti v $L_2(\mathbb R^n)$ ellipticheskogo operatora s bystro rastuschimi koeffitsientami”, Zap. nauch. seminarov LOMI AN SSSR, 14, Nauka, L., 1969, 288–294

[3] Laptev S. A., “O zamykanii v metrike obobschennogo integrala Dirikhle”, Differents. uravneniya, 7:4 (1971), 727–736 | MR | Zbl

[4] Devinatz A., “Essential self-adjointness of Schrödinger-type operators”, J. Funct. Anal., 25:1 (1977), 58–69 | DOI | MR | Zbl

[5] Rofe-Beketov F. S., “Zamechanie v svyazi s mnogomernym obobscheniem teoremy G. Veilya o samosopryazhennosti”, Teoriya funktsii, funktsion. analiz i ikh prilozheniya, 1989, no. 52, 88–90

[6] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR | Zbl

[7] Kato T., “Schrödinger operators with singular potentials”, Israel J. Math., 13 (1972), 135–148 | DOI | MR

[8] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 1, Nauka, M., 1981

[9] Akhiezer N. I., Variatsionnoe ischislenie, Vischa shkola, Kharkov, 1981 | Zbl