On Diophantine Approximations of Dependent Quantities in the $p$-adic Case
Matematičeskie zametki, Tome 73 (2003) no. 1, pp. 22-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we prove an analog of Khinchin's metric theorem in the case of linear Diophantine approximations of plane curves defined over the ring of $p$-adic integers by means of (Mahler) normal functions. We also prove some general assertions needed to generalize this result to the case of spaces of higher dimension.
@article{MZM_2003_73_1_a2,
     author = {V. V. Beresnevich and \'E. I. Kovalevskaya},
     title = {On {Diophantine} {Approximations} of {Dependent} {Quantities} in the $p$-adic {Case}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {22--37},
     publisher = {mathdoc},
     volume = {73},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a2/}
}
TY  - JOUR
AU  - V. V. Beresnevich
AU  - É. I. Kovalevskaya
TI  - On Diophantine Approximations of Dependent Quantities in the $p$-adic Case
JO  - Matematičeskie zametki
PY  - 2003
SP  - 22
EP  - 37
VL  - 73
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a2/
LA  - ru
ID  - MZM_2003_73_1_a2
ER  - 
%0 Journal Article
%A V. V. Beresnevich
%A É. I. Kovalevskaya
%T On Diophantine Approximations of Dependent Quantities in the $p$-adic Case
%J Matematičeskie zametki
%D 2003
%P 22-37
%V 73
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a2/
%G ru
%F MZM_2003_73_1_a2
V. V. Beresnevich; É. I. Kovalevskaya. On Diophantine Approximations of Dependent Quantities in the $p$-adic Case. Matematičeskie zametki, Tome 73 (2003) no. 1, pp. 22-37. http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a2/

[1] Khintchine A., “Einige Sätze über Kettenbrüche mit Anwendungen auf die Theorie der Diophantischen Approximationen”, Math. Ann., 92 (1924), 115–125 | DOI | MR

[2] Mahler K., “Über das Maßder Menge aller $S$-Zahlen”, Math. Ann., 106 (1932), 131–139 | DOI | MR | Zbl

[3] Sprindzhuk V. G., Problema Malera v metricheskoi teorii chisel, Nauka i tekhnika, Minsk, 1967

[4] Bernik V. I., “O tochnom poryadke priblizheniya nulya znacheniyami tselochislennykh mnogochlenov”, Acta Arith., 53 (1989), 17–28 | MR | Zbl

[5] Beresnevich V., “On approximation of real numbers by real algebraic numbers”, Acta Arith., 50:2 (1999), 97–112 | MR

[6] Bernik V. I., Dodson M. M., Metric Diophantine Approximation on Manifolds, Cambridge Univ. Press, Cambridge, 1999 | Zbl

[7] Sprindzhuk V. G., Metricheskaya teoriya diofantovykh priblizhenii, Nauka, M., 1977

[8] Sprindzhuk V. G., “Dostizheniya i problemy teorii diofantovykh priblizhenii”, UMN, 35:4 (1980), 1–80 | MR | Zbl

[9] Kleinbock D. Y., Margulis G. A., “Flows on homogeneous spaces and Diophantine approximation on manifolds”, Ann. Math., 148 (1998), 339–360 | DOI | MR | Zbl

[10] Mahler K., “Über Transcendente $p$-adisce Zahlen”, Composito Math., 2 (1935), 259–275 | Zbl

[11] Adams W. W., “Transcendental numbers in the $p$-adic domain”, Amer. J. Math., 88:2 (1966), 279–308 | DOI | MR | Zbl

[12] Mahler K., $p$-Adic Numbers and Their Functions, Cambridge Tracts in Math., 76, Cambridge Univ. Press, Cambridge, 1981 | MR | Zbl

[13] Melnichuk Yu. V., “O metricheskoi teorii sovmestnykh diofantovykh priblizhenii $p$-adicheskikh chisel”, Dokl. AN USSR. Ser. A, 1978, no. 5, 394–397

[14] Beresnevich V., Bernik V., Dodson M., Dickinson H., “The Khintchine–Groshev theorem for planar curves”, Proc. Royal Soc. London. Ser. A, 455 (1999), 3053–3063 | DOI | MR | Zbl

[15] Bernik V., Dodson M., Dickinson H., “A Khintchine type version of Schmidt's theorem for planar curves”, Proc. Royal Soc. London. Ser. A, 454 (1998), 179–185 | DOI | MR | Zbl

[16] Kovalevskaya E. I., “Metricheskaya teorema o tochnom poryadke priblizheniya nulya znacheniyami tselochislennykh mnogochlenov v $\mathbb Q_p$”, Dokl. NAN Belarusi, 43:5 (1999), 34–36 | MR | Zbl

[17] Kovalevskaya E. I., “$p$-adicheskii variant teoremy Khinchina dlya ploskikh krivykh v sluchae skhodimosti”, Dokl. NAN Belarusi, 44:2 (2000), 28–30 | MR

[18] Beresnevich V. V., “Primenenie ponyatiya regulyarnykh sistem tochek v metricheskoi teorii chisel”, Vestsi HAH Belarusi. Cep. fiz.-mat. navuk, 2000, no. 1, 35–39 | MR