On Diophantine Approximations of Dependent Quantities in the $p$-adic Case
Matematičeskie zametki, Tome 73 (2003) no. 1, pp. 22-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present paper, we prove an analog of Khinchin's metric theorem in the case of linear Diophantine approximations of plane curves defined over the ring of $p$-adic integers by means of (Mahler) normal functions. We also prove some general assertions needed to generalize this result to the case of spaces of higher dimension.
@article{MZM_2003_73_1_a2,
     author = {V. V. Beresnevich and \'E. I. Kovalevskaya},
     title = {On {Diophantine} {Approximations} of {Dependent} {Quantities} in the $p$-adic {Case}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {22--37},
     year = {2003},
     volume = {73},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a2/}
}
TY  - JOUR
AU  - V. V. Beresnevich
AU  - É. I. Kovalevskaya
TI  - On Diophantine Approximations of Dependent Quantities in the $p$-adic Case
JO  - Matematičeskie zametki
PY  - 2003
SP  - 22
EP  - 37
VL  - 73
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a2/
LA  - ru
ID  - MZM_2003_73_1_a2
ER  - 
%0 Journal Article
%A V. V. Beresnevich
%A É. I. Kovalevskaya
%T On Diophantine Approximations of Dependent Quantities in the $p$-adic Case
%J Matematičeskie zametki
%D 2003
%P 22-37
%V 73
%N 1
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a2/
%G ru
%F MZM_2003_73_1_a2
V. V. Beresnevich; É. I. Kovalevskaya. On Diophantine Approximations of Dependent Quantities in the $p$-adic Case. Matematičeskie zametki, Tome 73 (2003) no. 1, pp. 22-37. http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a2/

[1] Khintchine A., “Einige Sätze über Kettenbrüche mit Anwendungen auf die Theorie der Diophantischen Approximationen”, Math. Ann., 92 (1924), 115–125 | DOI | MR

[2] Mahler K., “Über das Maßder Menge aller $S$-Zahlen”, Math. Ann., 106 (1932), 131–139 | DOI | MR | Zbl

[3] Sprindzhuk V. G., Problema Malera v metricheskoi teorii chisel, Nauka i tekhnika, Minsk, 1967

[4] Bernik V. I., “O tochnom poryadke priblizheniya nulya znacheniyami tselochislennykh mnogochlenov”, Acta Arith., 53 (1989), 17–28 | MR | Zbl

[5] Beresnevich V., “On approximation of real numbers by real algebraic numbers”, Acta Arith., 50:2 (1999), 97–112 | MR

[6] Bernik V. I., Dodson M. M., Metric Diophantine Approximation on Manifolds, Cambridge Univ. Press, Cambridge, 1999 | Zbl

[7] Sprindzhuk V. G., Metricheskaya teoriya diofantovykh priblizhenii, Nauka, M., 1977

[8] Sprindzhuk V. G., “Dostizheniya i problemy teorii diofantovykh priblizhenii”, UMN, 35:4 (1980), 1–80 | MR | Zbl

[9] Kleinbock D. Y., Margulis G. A., “Flows on homogeneous spaces and Diophantine approximation on manifolds”, Ann. Math., 148 (1998), 339–360 | DOI | MR | Zbl

[10] Mahler K., “Über Transcendente $p$-adisce Zahlen”, Composito Math., 2 (1935), 259–275 | Zbl

[11] Adams W. W., “Transcendental numbers in the $p$-adic domain”, Amer. J. Math., 88:2 (1966), 279–308 | DOI | MR | Zbl

[12] Mahler K., $p$-Adic Numbers and Their Functions, Cambridge Tracts in Math., 76, Cambridge Univ. Press, Cambridge, 1981 | MR | Zbl

[13] Melnichuk Yu. V., “O metricheskoi teorii sovmestnykh diofantovykh priblizhenii $p$-adicheskikh chisel”, Dokl. AN USSR. Ser. A, 1978, no. 5, 394–397

[14] Beresnevich V., Bernik V., Dodson M., Dickinson H., “The Khintchine–Groshev theorem for planar curves”, Proc. Royal Soc. London. Ser. A, 455 (1999), 3053–3063 | DOI | MR | Zbl

[15] Bernik V., Dodson M., Dickinson H., “A Khintchine type version of Schmidt's theorem for planar curves”, Proc. Royal Soc. London. Ser. A, 454 (1998), 179–185 | DOI | MR | Zbl

[16] Kovalevskaya E. I., “Metricheskaya teorema o tochnom poryadke priblizheniya nulya znacheniyami tselochislennykh mnogochlenov v $\mathbb Q_p$”, Dokl. NAN Belarusi, 43:5 (1999), 34–36 | MR | Zbl

[17] Kovalevskaya E. I., “$p$-adicheskii variant teoremy Khinchina dlya ploskikh krivykh v sluchae skhodimosti”, Dokl. NAN Belarusi, 44:2 (2000), 28–30 | MR

[18] Beresnevich V. V., “Primenenie ponyatiya regulyarnykh sistem tochek v metricheskoi teorii chisel”, Vestsi HAH Belarusi. Cep. fiz.-mat. navuk, 2000, no. 1, 35–39 | MR