On Diophantine Approximations of Dependent Quantities in the $p$-adic Case
Matematičeskie zametki, Tome 73 (2003) no. 1, pp. 22-37
Voir la notice de l'article provenant de la source Math-Net.Ru
In the present paper, we prove an analog of Khinchin's metric theorem in the case of linear Diophantine approximations of plane curves defined over the ring of $p$-adic integers by means of (Mahler) normal functions. We also prove some general assertions needed to generalize this result to the case of spaces of higher dimension.
@article{MZM_2003_73_1_a2,
author = {V. V. Beresnevich and \'E. I. Kovalevskaya},
title = {On {Diophantine} {Approximations} of {Dependent} {Quantities} in the $p$-adic {Case}},
journal = {Matemati\v{c}eskie zametki},
pages = {22--37},
publisher = {mathdoc},
volume = {73},
number = {1},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a2/}
}
TY - JOUR AU - V. V. Beresnevich AU - É. I. Kovalevskaya TI - On Diophantine Approximations of Dependent Quantities in the $p$-adic Case JO - Matematičeskie zametki PY - 2003 SP - 22 EP - 37 VL - 73 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a2/ LA - ru ID - MZM_2003_73_1_a2 ER -
V. V. Beresnevich; É. I. Kovalevskaya. On Diophantine Approximations of Dependent Quantities in the $p$-adic Case. Matematičeskie zametki, Tome 73 (2003) no. 1, pp. 22-37. http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a2/