On Diophantine Approximations of Dependent Quantities in the $p$-adic Case
Matematičeskie zametki, Tome 73 (2003) no. 1, pp. 22-37

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we prove an analog of Khinchin's metric theorem in the case of linear Diophantine approximations of plane curves defined over the ring of $p$-adic integers by means of (Mahler) normal functions. We also prove some general assertions needed to generalize this result to the case of spaces of higher dimension.
@article{MZM_2003_73_1_a2,
     author = {V. V. Beresnevich and \'E. I. Kovalevskaya},
     title = {On {Diophantine} {Approximations} of {Dependent} {Quantities} in the $p$-adic {Case}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {22--37},
     publisher = {mathdoc},
     volume = {73},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a2/}
}
TY  - JOUR
AU  - V. V. Beresnevich
AU  - É. I. Kovalevskaya
TI  - On Diophantine Approximations of Dependent Quantities in the $p$-adic Case
JO  - Matematičeskie zametki
PY  - 2003
SP  - 22
EP  - 37
VL  - 73
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a2/
LA  - ru
ID  - MZM_2003_73_1_a2
ER  - 
%0 Journal Article
%A V. V. Beresnevich
%A É. I. Kovalevskaya
%T On Diophantine Approximations of Dependent Quantities in the $p$-adic Case
%J Matematičeskie zametki
%D 2003
%P 22-37
%V 73
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a2/
%G ru
%F MZM_2003_73_1_a2
V. V. Beresnevich; É. I. Kovalevskaya. On Diophantine Approximations of Dependent Quantities in the $p$-adic Case. Matematičeskie zametki, Tome 73 (2003) no. 1, pp. 22-37. http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a2/