Growth of Entire Functions with Given Zeros and Representation of Meromorphic Functions
Matematičeskie zametki, Tome 73 (2003) no. 1, pp. 120-134
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\Lambda=\{\lambda_n\}$ be a sequence of points on the complex plane, and let $\Lambda(r)$ be the number of points of the sequence $\Lambda$ in the disk $\{|z|$. We study the following problem in terms of the counting function $\Lambda(r)$: what is the minimal possible growth of the characteristic $M_f(r)=\max\{|f(z)|\colon|z|=r\}$ in the class of all entire functions $f\not\equiv0$ vanishing on $\Lambda$? Let $F$ be a meromorphic function in $\mathbb C$. In terms of the Nevanlinna characteristic $T_F(r)$ of the function $F$, we estimate the minimal possible growth of the characteristics $M_g(r)$ and $M_h(r)$ in the class of all pairs of entire functions $g$ and $h$ such that $F=g/h$. We present analogs of the obtained results for holomorphic and meromorphic functions in the unit disk in the complex plane.
@article{MZM_2003_73_1_a10,
author = {B. N. Khabibullin},
title = {Growth of {Entire} {Functions} with {Given} {Zeros} and {Representation} of {Meromorphic} {Functions}},
journal = {Matemati\v{c}eskie zametki},
pages = {120--134},
publisher = {mathdoc},
volume = {73},
number = {1},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a10/}
}
TY - JOUR AU - B. N. Khabibullin TI - Growth of Entire Functions with Given Zeros and Representation of Meromorphic Functions JO - Matematičeskie zametki PY - 2003 SP - 120 EP - 134 VL - 73 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a10/ LA - ru ID - MZM_2003_73_1_a10 ER -
B. N. Khabibullin. Growth of Entire Functions with Given Zeros and Representation of Meromorphic Functions. Matematičeskie zametki, Tome 73 (2003) no. 1, pp. 120-134. http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a10/