Growth of Entire Functions with Given Zeros and Representation of Meromorphic Functions
Matematičeskie zametki, Tome 73 (2003) no. 1, pp. 120-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Lambda=\{\lambda_n\}$ be a sequence of points on the complex plane, and let $\Lambda(r)$ be the number of points of the sequence $\Lambda$ in the disk $\{|z|$. We study the following problem in terms of the counting function $\Lambda(r)$: what is the minimal possible growth of the characteristic $M_f(r)=\max\{|f(z)|\colon|z|=r\}$ in the class of all entire functions $f\not\equiv0$ vanishing on $\Lambda$? Let $F$ be a meromorphic function in $\mathbb C$. In terms of the Nevanlinna characteristic $T_F(r)$ of the function $F$, we estimate the minimal possible growth of the characteristics $M_g(r)$ and $M_h(r)$ in the class of all pairs of entire functions $g$ and $h$ such that $F=g/h$. We present analogs of the obtained results for holomorphic and meromorphic functions in the unit disk in the complex plane.
@article{MZM_2003_73_1_a10,
     author = {B. N. Khabibullin},
     title = {Growth of {Entire} {Functions} with {Given} {Zeros} and {Representation} of {Meromorphic} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {120--134},
     publisher = {mathdoc},
     volume = {73},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a10/}
}
TY  - JOUR
AU  - B. N. Khabibullin
TI  - Growth of Entire Functions with Given Zeros and Representation of Meromorphic Functions
JO  - Matematičeskie zametki
PY  - 2003
SP  - 120
EP  - 134
VL  - 73
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a10/
LA  - ru
ID  - MZM_2003_73_1_a10
ER  - 
%0 Journal Article
%A B. N. Khabibullin
%T Growth of Entire Functions with Given Zeros and Representation of Meromorphic Functions
%J Matematičeskie zametki
%D 2003
%P 120-134
%V 73
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a10/
%G ru
%F MZM_2003_73_1_a10
B. N. Khabibullin. Growth of Entire Functions with Given Zeros and Representation of Meromorphic Functions. Matematičeskie zametki, Tome 73 (2003) no. 1, pp. 120-134. http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a10/

[1] Shvarts L., Analiz, T. I, Nauka, M., 1967

[2] Goldberg A. A., Ostrovskii I. V., Raspredelenie znachenii meromorfnykh funktsii, Nauka, M., 1970

[3] Rubel L. A., Taylor B. A., “A Fourier series method for meromorphic and entire functions”, Bull. Soc. Math. France, 96 (1968), 53–96 | Zbl

[4] Miles J. B., “Quotient representations of meromorphic functions”, J. Analyse Math., 25 (1972), 371–388 | DOI | MR | Zbl

[5] Rubel L. A., Entire and Meromorphic Functions, Springer-Verlag, New York–Berlin–Heidelberg, 1996

[6] Khabibullin B. N., “Teorema o naimenshei mazhorante i ee primeneniya. I: Tselye i meromorfnye funktsii”, Izv. RAN. Ser. matem., 57:1 (1993), 129–146 | Zbl

[7] Skoda H., “Croissançe des fonctions entiéres s'annulant sur une hypersurface donnée de $\mathbb C^n$”, Seminair P. Lelong, 1970–1971, Lecture Notes in Math, 275, Springer-Verlag, 1972, 82–105 | MR | Zbl

[8] Stoll W., Value Distribution Theory for Meromorphic Maps, Friedr. Vieweg Sohn Verlagsgesellschaft Gmbh, Braunschweig, 1985 | Zbl

[9] Taylor B. A., “Some locally convex spaces of entire functions”, Proc. Symp. Pure Math., Amer. Math. Soc., Providence (R.I.), 1968, 431–467

[10] Khabibullin B. N., “Mnozhestva edinstvennosti v prostranstvakh tselykh funktsii odnoi peremennoi”, Izv. AN SSSR. Ser. matem., 55:5 (1991), 1101–1123

[11] Khabibullin B. N., “Dual approach to certain questions for the weighted spaces of holomorphic functions”, Proc. Israel Math. Conf. “Entire Functions in Modern Analysis”, Tel-Aviv, 1997

[12] Kheiman U., Kennedi P., Subgarmonicheskie funktsii, Mir, M., 1980

[13] Lelon P., Gruman L., Tselye funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1989 | Zbl

[14] Koosis P., Leçons sur le théorème de Beurling et Malliavin, Publ. CRM, Montréal, 1996 | Zbl

[15] Shamoyan F. A., “O nulyakh analiticheskikh v kruge funktsii, rastuschikh vblizi granitsy”, Izv. AN ArmSSR. Matem., 18:1 (1983), 15–27 | MR | Zbl

[16] Shvedenko S. V., “Klassy Khardi i svyazannye s nimi prostranstva analiticheskikh funktsii v kruge, polikruge i share”, Itogi nauki i tekhniki. Matem. analiz, 23, VINITI, M., 1985, 3–124 | MR