Representability of Analytic Functions in Terms of Their Boundary Values
Matematičeskie zametki, Tome 73 (2003) no. 1, pp. 8-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $\nu$ is an arbitrary finite complex Borel measure on the interval $[0;2\pi)$, $u(re^{i\varphi})$ is its Poisson integral, $v(re^{i\varphi})$ and $u(re^{i\varphi})$ are the conjugate harmonics of $F(z)=u(z)+iv(z)$, $z=re^{i\varphi}$ and $F(t)$ is the nontangential limiting value of the analytic function $F(z)$ as $z\to t=e^{i\theta}$. In this paper, we consider the problem of representing the analytic function $F(z)$ in terms of its boundary values $F(t)$ .
@article{MZM_2003_73_1_a1,
     author = {R. A. Aliyev},
     title = {Representability of {Analytic} {Functions} in {Terms} of {Their} {Boundary} {Values}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {8--21},
     publisher = {mathdoc},
     volume = {73},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a1/}
}
TY  - JOUR
AU  - R. A. Aliyev
TI  - Representability of Analytic Functions in Terms of Their Boundary Values
JO  - Matematičeskie zametki
PY  - 2003
SP  - 8
EP  - 21
VL  - 73
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a1/
LA  - ru
ID  - MZM_2003_73_1_a1
ER  - 
%0 Journal Article
%A R. A. Aliyev
%T Representability of Analytic Functions in Terms of Their Boundary Values
%J Matematičeskie zametki
%D 2003
%P 8-21
%V 73
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a1/
%G ru
%F MZM_2003_73_1_a1
R. A. Aliyev. Representability of Analytic Functions in Terms of Their Boundary Values. Matematičeskie zametki, Tome 73 (2003) no. 1, pp. 8-21. http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a1/

[1] Ulyanov P. L., “Ob $A$-integrale Koshi”, UMN, 11:5 (1956), 223–229 | MR | Zbl

[2] Vinogradova I. A., “Obobschennyi integral i sopryazhennye funktsii”, Matem. sb., 99 (141):1 (1976), 84–121 | MR

[3] Vinogradova I. A., “Ob $LG^*$-integrale tipa Koshi”, Matem. zametki, 20:5 (1976), 645–653 | MR | Zbl

[4] Riesz M., “Sur les fonctions conjuguees”, Math. Z., 27 (1927), 218–244 | DOI | MR

[5] Ulyanov P. L., “$A$-integral i sopryazhennye funktsii”, Uchenye zap. Mosk. un-ta, 181 (1956), 139–157 | MR

[6] Hruscev S. V., Vinogradov S. A., “Free interpolation in the space of uniformly convergent Taylor series”, Lect. Notes in Math., 864, 1981, 171–213 | MR

[7] Salimov T. S., “K teoreme E. Titchmarsha o sopryazhennoi funktsii”, Proceedings of A. Razmadze Math. Institute, 102 (1993), 99–114 | MR

[8] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1989

[9] Garnett Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984 | Zbl