Representability of Analytic Functions in Terms of Their Boundary Values
Matematičeskie zametki, Tome 73 (2003) no. 1, pp. 8-21
Voir la notice de l'article provenant de la source Math-Net.Ru
Suppose that $\nu$ is an arbitrary finite complex Borel measure on the interval $[0;2\pi)$, $u(re^{i\varphi})$ is its Poisson integral, $v(re^{i\varphi})$ and $u(re^{i\varphi})$ are the conjugate harmonics of $F(z)=u(z)+iv(z)$, $z=re^{i\varphi}$ and $F(t)$ is the nontangential limiting value of the analytic function $F(z)$ as $z\to t=e^{i\theta}$. In this paper, we consider the problem of representing the analytic function $F(z)$ in terms of its boundary values $F(t)$ .
@article{MZM_2003_73_1_a1,
author = {R. A. Aliyev},
title = {Representability of {Analytic} {Functions} in {Terms} of {Their} {Boundary} {Values}},
journal = {Matemati\v{c}eskie zametki},
pages = {8--21},
publisher = {mathdoc},
volume = {73},
number = {1},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a1/}
}
R. A. Aliyev. Representability of Analytic Functions in Terms of Their Boundary Values. Matematičeskie zametki, Tome 73 (2003) no. 1, pp. 8-21. http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a1/