On Weighted Norms of Riesz Transforms Equal to One
Matematičeskie zametki, Tome 72 (2002) no. 6, pp. 869-882
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the vector Riesz transform $\nabla ^t\Delta ^{-(t+s)/2}\operatorname {div}^s$ of even order $s+t$ in the weighted space$L_2(\mathbb R^n;|x|^a)$. We establish that for $t\ne s$, $n>3$ its norm is equal to one on some interval of values of $a$, while inside the interval a stronger estimate for a subordinate norm is valid.
@article{MZM_2002_72_6_a7,
author = {E. A. Kalita},
title = {On {Weighted} {Norms} of {Riesz} {Transforms} {Equal} to {One}},
journal = {Matemati\v{c}eskie zametki},
pages = {869--882},
publisher = {mathdoc},
volume = {72},
number = {6},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_6_a7/}
}
E. A. Kalita. On Weighted Norms of Riesz Transforms Equal to One. Matematičeskie zametki, Tome 72 (2002) no. 6, pp. 869-882. http://geodesic.mathdoc.fr/item/MZM_2002_72_6_a7/