Certain Diophantine Properties of the Mahler Measure
Matematičeskie zametki, Tome 72 (2002) no. 6, pp. 828-833.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a polynomial in several Mahler measures with positive rational coefficients is equal to an integer if and only if all these Mahler measures are integers. An estimate for the distance between a metric Mahler measure and an integer is obtained. Finally, it is proved that the ratio of two distinct Mahler measures of algebraic units is irrational.
@article{MZM_2002_72_6_a4,
     author = {A. Dubickas},
     title = {Certain {Diophantine} {Properties} of the {Mahler} {Measure}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {828--833},
     publisher = {mathdoc},
     volume = {72},
     number = {6},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_6_a4/}
}
TY  - JOUR
AU  - A. Dubickas
TI  - Certain Diophantine Properties of the Mahler Measure
JO  - Matematičeskie zametki
PY  - 2002
SP  - 828
EP  - 833
VL  - 72
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_6_a4/
LA  - ru
ID  - MZM_2002_72_6_a4
ER  - 
%0 Journal Article
%A A. Dubickas
%T Certain Diophantine Properties of the Mahler Measure
%J Matematičeskie zametki
%D 2002
%P 828-833
%V 72
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_6_a4/
%G ru
%F MZM_2002_72_6_a4
A. Dubickas. Certain Diophantine Properties of the Mahler Measure. Matematičeskie zametki, Tome 72 (2002) no. 6, pp. 828-833. http://geodesic.mathdoc.fr/item/MZM_2002_72_6_a4/

[1] Lehmer D. H., “Factorization of certain cyclotomic functions”, Ann. of Math., 34 (1933), 461–479 | DOI | MR | Zbl

[2] Boyd D. W., “Perron units which are not Mahler measures”, Ergod. Theory and Dynamic. Systems, 6 (1986), 485–488 | MR | Zbl

[3] Dubickas A., “Mahler measures close to an integer”, Canadian Math. Bull., 45 (2002), 196–203 | MR | Zbl

[4] Adler R. L., Marcus B., “Topological entropy and equivalence of dynamical systems”, Mem. Amer. Math. Soc., 20, no. 219, 1979 | Zbl

[5] Kronecker L., “Zwei Sätze über Gleichungen mit ganzzahligen Koefficienten”, J. Reine Angew. Math., 53 (1857), 173–175

[6] Dubickas A., Smyth C. J., “On the metric Mahler measure”, J. Number Theory, 86 (2001), 368–387 | DOI | MR | Zbl

[7] Dobrowolski E., “On a question of Lehmer and the number of irreducible factors of a polynomial”, Acta Arith., 34 (1979), 391–401 | MR | Zbl

[8] Bertin M.-J., Decomps-Guilloux A., Grandet-Hugot M., Pathiaux-Delefosse M., Schreiber J.-P., Pisot and Salem Numbers, Birkhäuser Verlag, Basel, 1992